P25 and Rutile Titania in Photocatalytic Degradation of Phenol and Methylene Blue

Authors

DOI:

https://doi.org/10.34024/jsse.2024.v2.19413

Keywords:

AOPs, photocatalyst, pollution control, titanium dioxide.

Abstract

Phenolic compounds, dyes, and their derivatives are prevalent organic pollutants in surface waters due to industrial activities, effluent discharge, and agricultural runoff. In this context, this study aimed to evaluate the photocatalytic activity of commercial P25 TiO2 (TiO2-P25) and rutile TiO2 (TiO2-R) solids for the degrading phenol and methylene blue dye in a batch reactor under UV-C irradiation at 256 nm. X-ray diffraction data confirm the predominant presence of the anatase phase in TiO2-P25 and the rutile phase in TiO2-R. Significant difference in crystallite size and specific area (SBET) between the samples were linked to their commercial synthesis method. The results demonstrated that TiO2-P25 exhibited higher photocatalytic activity than TiO2-R due to differences in band gap. The use of a 15W lamp further enhanced this efficiency. For phenol degradation, TiO2-P25 obtained 57% conversion at 9W and an 11% increase in the initial concentration at 15W, while TiO2-R showed lower efficiency. In photolysis, minimal conversion was observed. Total organic carbon (TOC) data suggest that photocatalysis generates organic metabolites rather than achieving complete mineralization, leading to the accumulation of intermediates in the effluent, particularly with the 15W lamp.

References

A. S. Perera et al., “A non-doped microporous titanosilicate for bimodal adsorption-photocatalysis based removal of organic water pollutants,” Microporous and Mesoporous Materials, vol. 345, p. 112276, Nov. 2022, doi: 10.1016/j.micromeso.2022.112276.

M. Syafrudin et al., “Pesticides in Drinking Water—A Review,” Int J Environ Res Public Health, vol. 18, no. 2, p. 468, Jan. 2021, doi: 10.3390/ijerph18020468.

M.-C. Danner, A. Robertson, V. Behrends, and J. Reiss, “Antibiotic pollution in surface fresh waters: Occurrence and effects,” Science of The Total Environment, vol. 664, pp. 793–804, May 2019, doi: 10.1016/j.scitotenv.2019.01.406.

U. Shanker, M. Rani, and V. Jassal, “Degradation of hazardous organic dyes in water by nanomaterials,” Environ Chem Lett, vol. 15, no. 4, pp. 623–642, Dec. 2017, doi: 10.1007/s10311-017-0650-2.

O. M. Ogunbanwo et al., “High Concentrations of Pharmaceuticals in a Nigerian River Catchment,” Environ Toxicol Chem, vol. 41, no. 3, pp. 551–558, Mar. 2022, doi: 10.1002/etc.4879.

A. Bibi, S. Bibi, M. Abu-Dieyeh, and M. A. Al-Ghouti, “Towards sustainable physiochemical and biological techniques for the remediation of phenol from wastewater: A review on current applications and removal mechanisms,” J Clean Prod, vol. 417, p. 137810, Sep. 2023, doi: 10.1016/j.jclepro.2023.137810.

A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi, and H. Biglari, “Optimizing biological treatment of petroleum industry wastewater in a facultative stabilization pond for simultaneous removal of carbon and phenol,” Toxin Rev, vol. 40, no. 2, pp. 189–197, Apr. 2021, doi: 10.1080/15569543.2019.1573433.

A. Mohd, “Presence of phenol in wastewater effluent and its removal: an overview,” Int J Environ Anal Chem, vol. 102, no. 6, pp. 1362–1384, May 2022, doi: 10.1080/03067319.2020.1738412.

I. Khan et al., “Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation,” Water (Basel), vol. 14, no. 2, p. 242, Jan. 2022, doi: 10.3390/w14020242.

A. S. Eltaweil, G. S. Elgarhy, G. M. El-Subruiti, and A. M. Omer, “Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye,” Int J Biol Macromol, vol. 154, pp. 307–318, Jul. 2020, doi: 10.1016/j.ijbiomac.2020.03.122.

J. Wang and S. Wang, “Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism,” Chemical Engineering Journal, vol. 401, p. 126158, Dec. 2020, doi: 10.1016/j.cej.2020.126158.

M. Z. Akbari, Y. Xu, Z. Lu, and L. Peng, “Review of antibiotics treatment by advance oxidation processes,” Environmental Advances, vol. 5, p. 100111, Oct. 2021, doi: 10.1016/j.envadv.2021.100111.

J. Iyyappan, B. Gaddala, R. Gnanasekaran, M. Gopinath, D. Yuvaraj, and V. Kumar, “Critical review on wastewater treatment using photo catalytic advanced oxidation process: Role of photocatalytic materials, reactor design and kinetics,” Case Studies in Chemical and Environmental Engineering, vol. 9, p. 100599, Jun. 2024, doi: 10.1016/j.cscee.2023.100599.

G. Veréb et al., “Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2,” Appl Catal B, vol. 129, pp. 194–201, Jan. 2013, doi: 10.1016/j.apcatb.2012.08.037.

S.-W. Lv, Y. Cong, X. Chen, W. Wang, and L. Che, “Developing fine-tuned metal–organic frameworks for photocatalytic treatment of wastewater: A review,” Chemical Engineering Journal, vol. 433, p. 133605, Apr. 2022, doi: 10.1016/j.cej.2021.133605.

M. R. Al-Mamun, S. Kader, M. S. Islam, and M. Z. H. Khan, “Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review,” J Environ Chem Eng, vol. 7, no. 5, p. 103248, Oct. 2019, doi: 10.1016/j.jece.2019.103248.

Y. Li, X. Li, J. Li, and J. Yin, “Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study,” Water Res, vol. 40, no. 6, pp. 1119–1126, Mar. 2006, doi: 10.1016/j.watres.2005.12.042.

J. Zhang, P. Zhou, J. Liu, and J. Yu, “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2,” Physical Chemistry Chemical Physics, vol. 16, no. 38, pp. 20382–20386, 2014, doi: 10.1039/C4CP02201G.

Md. B. K. Suhan et al., “Sustainable pollutant removal and wastewater remediation using TiO2-based nanocomposites: A critical review,” Nano-Structures & Nano-Objects, vol. 36, p. 101050, Oct. 2023, doi: 10.1016/j.nanoso.2023.101050.

A. K. Chakraborty, S. Akter, S. Ganguli, M. A. Haque, A. S. M. Nur, and M. A. Sabur, “Design of FeWO4@N-TiO2 nanocomposite and its enhanced photocatalytic activity in decomposing methylene blue and phenol under visible light,” Environ Technol Innov, p. 103536, Jan. 2024, doi: 10.1016/j.eti.2024.103536.

S. Mishra, N. Chakinala, A. G. Chakinala, and P. K. Surolia, “Photocatalytic degradation of methylene blue using monometallic and bimetallic Bi-Fe doped TiO2,” Catal Commun, vol. 171, p. 106518, Nov. 2022, doi: 10.1016/j.catcom.2022.106518.

T. Z. Liza, M. M. H. Tusher, F. Anwar, M. F. Monika, K. F. Amin, and F. N. U. Asrafuzzaman, “Effect of Ag-doping on morphology, structure, band gap and photocatalytic activity of bio-mediated TiO2 nanoparticles,” Results in Materials, vol. 22, p. 100559, Jun. 2024, doi: 10.1016/j.rinma.2024.100559.

A. K. Behera, K. P. Shadangi, and P. K. Sarangi, “Synthesis of dye-sensitized TiO2/Ag doped nano-composites using UV photoreduction process for phenol degradation: A comparative study,” Environmental Pollution, vol. 312, p. 120019, Nov. 2022, doi: 10.1016/j.envpol.2022.120019.

Y. Liu, S. Zhou, F. Yang, H. Qin, and Y. Kong, “Degradation of phenol in industrial wastewater over the F–Fe/TiO2 photocatalysts under visible light illumination,” Chin J Chem Eng, vol. 24, no. 12, pp. 1712–1718, Dec. 2016, doi: 10.1016/j.cjche.2016.05.024.

Y. J. O. Asencios, V. S. Lourenço, and W. A. Carvalho, “Removal of phenol in seawater by heterogeneous photocatalysis using activated carbon materials modified with TiO2,” Catal Today, vol. 388–389, pp. 247–258, Apr. 2022, doi: 10.1016/j.cattod.2020.06.064.

Y. Yue et al., “Synergistic adsorption and photocatalysis study of TiO2 and activated carbon composite,” Heliyon, vol. 10, no. 10, p. e30817, May 2024, doi: 10.1016/j.heliyon.2024.e30817.

A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Physical Review, vol. 56, no. 10, pp. 978–982, Nov. 1939, doi: 10.1103/PhysRev.56.978.

S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J Am Chem Soc, vol. 60, no. 2, pp. 309–319, Feb. 1938, doi: 10.1021/ja01269a023.

R. S. Weber, “Effect of Local Structure on the UV-Visible Absorption Edges of Molybdenum Oxide Clusters and Supported Molybdenum Oxides,” J Catal, vol. 151, no. 2, pp. 470–474, Feb. 1995, doi: 10.1006/jcat.1995.1052.

D. Sarkar, S. Mukherjee, and K. K. Chattopadhyay, “Synthesis, characterization and high natural sunlight photocatalytic performance of cobalt doped TiO2 nanofibers,” Physica E Low Dimens Syst Nanostruct, vol. 50, pp. 37–43, May 2013, doi: 10.1016/j.physe.2013.02.010.

C. A. Sierra-Pereira and E. A. Urquieta-González, “Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam,” Fuel, vol. 118, pp. 137–147, Feb. 2014, doi: 10.1016/j.fuel.2013.10.054.

W. M. Shaheen, “Thermal solid–solid interaction and catalytic properties of CuO/Al2O3 system treated with ZnO and MoO3,” Thermochim Acta, vol. 385, no. 1–2, pp. 105–116, Mar. 2002, doi: 10.1016/S0040-6031(01)00710-9.

M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 87, no. 9–10, pp. 1051–1069, Oct. 2015, doi: 10.1515/pac-2014-1117.

H. Nur, “Modification of titanium surface species of titania by attachment of silica nanoparticles,” Materials Science and Engineering: B, vol. 133, no. 1–3, pp. 49–54, Aug. 2006, doi: 10.1016/j.mseb.2006.05.003.

E. Wang, T. He, L. Zhao, Y. Chen, and Y. Cao, “Improved visible light photocatalytic activity of titania doped with tin and nitrogen,” J. Mater. Chem., vol. 21, no. 1, pp. 144–150, 2011, doi: 10.1039/C0JM02539A.

B. Gao, Y. Ma, Y. Cao, W. Yang, and J. Yao, “Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide,” J Phys Chem B, vol. 110, no. 29, pp. 14391–14397, Jul. 2006, doi: 10.1021/jp0624606.

S. Majumder, D. Paramanik, V. Solanki, B. P. Bag, and S. Varma, “Bandgap tailoring of rutile TiO2(110) via surface patterning with electron cyclotron resonance sputtering,” Appl Phys Lett, vol. 98, no. 5, Jan. 2011, doi: 10.1063/1.3549768.

K. Yang, Y. Dai, B. Huang, and S. Han, “Theoretical Study of N-Doped TiO2 Rutile Crystals,” J Phys Chem B, vol. 110, no. 47, pp. 24011–24014, Nov. 2006, doi: 10.1021/jp0651135.

L. Sun, J. Li, C. L. Wang, S. F. Li, H. B. Chen, and C. J. Lin, “An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity,” Solar Energy Materials and Solar Cells, vol. 93, no. 10, pp. 1875–1880, Oct. 2009, doi: 10.1016/j.solmat.2009.07.001.

H. Chun, W. Yizhong, and T. Hongxiao, “Destruction of phenol aqueous solution by photocatalysis or direct photolysis,” Chemosphere, vol. 41, no. 8, pp. 1205–1209, Oct. 2000, doi: 10.1016/S0045-6535(99)00539-1.

J. Araña, E. Tello Rendón, J. M. Doña Rodrı́guez, J. A. Herrera Melián, O. González Dı́az, and J. Pérez Peña, “Highly concentrated phenolic wastewater treatment by the Photo-Fenton reaction, mechanism study by FTIR-ATR,” Chemosphere, vol. 44, no. 5, pp. 1017–1023, Aug. 2001, doi: 10.1016/S0045-6535(00)00359-3.

J. Chen, L. Eberlein, and C. H. Langford, “Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite,” J Photochem Photobiol A Chem, vol. 148, no. 1–3, pp. 183–189, May 2002, doi: 10.1016/S1010-6030(02)00041-2.

M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem Eng Sci, vol. 59, no. 1, pp. 3–15, Jan. 2004, doi: 10.1016/j.ces.2003.07.015.

M. Qamar, M. Muneer, and D. Bahnemann, “Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide,” J Environ Manage, vol. 80, no. 2, pp. 99–106, Jul. 2006, doi: 10.1016/j.jenvman.2005.09.002.

M. R. Elahifard, S. Ahmadvand, and A. Mirzanejad, “Effects of Ni-doping on the photo-catalytic activity of TiO2 anatase and rutile: Simulation and experiment,” Mater Sci Semicond Process, vol. 84, pp. 10–16, Sep. 2018, doi: 10.1016/j.mssp.2018.05.001.

graphical abstract

Additional Files

Published

2024-12-03

How to Cite

P25 and Rutile Titania in Photocatalytic Degradation of Phenol and Methylene Blue. (2024). JSSE - Journal of Science & Sustainable Engineering , 2(1), 8. https://doi.org/10.34024/jsse.2024.v2.19413
Received 2024-08-30
Accepted 2024-10-25
Published 2024-12-03