Microbial Degradation of Heterocycles- A Review

Authors

  • L. H. S. Martins Federal Rural University of Amazonia (UFRA)
  • J. R. Barbosa Federal University of Pará (UFPA)
  • S. B. Silva University of Pará (UFPA)
  • P. W. P. Gomes Federal University of Pará
  • A. Komesu Federal University of São Paulo (UNIFESP)
  • G. V. S. Pereira Federal University of Pará (UFPA)
  • R. C. B. Alves Federal Rural University of Amazonia (UFRA)
  • C. M. G. Bichara Federal Rural University of Amazonia (UFRA)

DOI:

https://doi.org/10.34024/jsse.2023.v1.15462

Keywords:

Biotechnology, Environment pollution, Organic chemistry

Abstract

Heterocycles are organic compounds that are well-known and distributed in nature; they can be used in the pharmaceutical, agrochemical, and chemical industries. Heterocycles composed of sulfur, nitrogen, and oxygen atoms are harmful toxins and can cause cancers; these substances can persist for years in the environment. One attractive alternative to expensive physical and chemical methods is microbial degradations, which present high potential and low cost, causing minimal environmental impacts. The use of these microorganisms makes use of heterocyclic substances as substrates, removing them efficiently and safely. Some strains of wild and genetically modified microorganisms (bacteria and fungi) have already been used to degrade various pesticides and aromatic compounds. Understanding the biodegradation mechanism of microorganisms will benefit future bioremediation studies, which may prove to be one of the alternatives to solving environmental problems. This review will focus on the microbial degradation of heterocyclic compounds, taking into account the most used techniques and their limitations in future research

Downloads

Download data is not yet available.

References

• [1] R. R. Gupta, M. Kumar, and V. Gupta, Heterocyclic Chemistry: Volume II: Five-Membered Heterocycles. Springer Science & Business Media, 2013.

• [2] R. B. Toche and R. A. Janrao, “Synthesis, characterization and antimicrobial evaluation of novel urea, sulfonamide and acetamide 3,4-dihydropyrazino[1,2-a]indol-1(2H)-one derivatives,” Arabian Journal of Chemistry, vol. 12, no. 8, pp. 3406–3416, Dec. 2019, doi: 10.1016/j.arabjc.2015.08.034.

• [3] P. Xu, B. Yu, F. L. Li, X. F. Cai, and C. Q. Ma, “Microbial degradation of sulfur, nitrogen and oxygen heterocycles,” Trends Microbiol, vol. 14, no. 9, pp. 398–405, Sep. 2006, doi: 10.1016/j.tim.2006.07.002.

• [4] K.-Y. Choi, “Discoloration of indigo dyes by eco-friendly biocatalysts,” Dyes and Pigments, vol. 184, p. 108749, Jan. 2021, doi: 10.1016/j.dyepig.2020.108749.

• [5] A. T. Balaban, D. C. Oniciu, and A. R. Katritzky, “Aromaticity as a Cornerstone of Heterocyclic Chemistry,” Chem Rev, vol. 104, no. 5, pp. 2777–2812, May 2004, doi: 10.1021/cr0306790.

• [6] A. F. Pozharskii, A. R. Katritzky, and A. T. Soldatenkov, Heterocycles in life and society. Wiley Chichester, 2011.

• [7] K. C. Majumdar and S. K. Chattopadhyay, Heterocycles in natural product synthesis. John Wiley & Sons, 2011.

• [8] S. Taghavi et al., “Nicotine content of domestic cigarettes, imported cigarettes and pipe tobacco in iran,” Addiction & health, vol. 4, no. 1–2, p. 28, 2012.

• [9] L. Avois, “Central nervous system stimulants and sport practice,” Br J Sports Med, vol. 40, no. Supplement 1, pp. i16–i20, Jul. 2006, doi: 10.1136/bjsm.2006.027557.

• [10] B. C. Nunes, J. B. dos Santos Garcia, and R. K. Sakata, “Morphine as first medication for treatment of cancer pain,” Brazilian Journal of Anesthesiology (English Edition), vol. 64, no. 4, pp. 236–240, Jul. 2014, doi: 10.1016/j.bjane.2013.06.016.

• [11] H. Hai-Ying, Q. Yan-Ling, and Z. Cheng-Xue, “Reactions of enamines with fluorinated acyl chlorides - Synthesis of fluorinated 1,3-diketones and 1,3-keto-aldehydes,” Chin J Chem, vol. 16, no. 6, pp. 549–556, Aug. 2010, doi: 10.1002/cjoc.19980160611.

• [12] J. Clayden, N. Greeves, and S. Warren, Organic chemistry. Oxford University Press, USA, 2012.

• [13] A. R. Chamberlin and D. J. Sall, “Reduction of Ketones to Alkenes,” in Comprehensive Organic Synthesis, Elsevier, 1991, pp. 923–953. doi: 10.1016/B978-0-08-052349-1.00251-1.

• [14] A. F. Abdel-Magid, “8.01 Reduction of C=O to CHOH by Metal Hydrides,” in Comprehensive Organic Synthesis II, Elsevier, 2014, pp. 1–84. doi: 10.1016/B978-0-08-097742-3.00801-6.

• [15] H. M. Merken and G. R. Beecher, “Liquid chromatographic method for the separation and quantification of prominent flavonoid aglycones,” J Chromatogr A, vol. 897, no. 1–2, pp. 177–184, Nov. 2000, doi: 10.1016/S0021-9673(00)00826-8.

• [16] B. L. Tan, M. E. Norhaizan, W.-P.-P. Liew, and H. Sulaiman Rahman, “Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases,” Front Pharmacol, vol. 9, Oct. 2018, doi: 10.3389/fphar.2018.01162.

• [17] P. M. Kris-Etherton and C. L. Keen, “Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health,” Curr Opin Lipidol, vol. 13, no. 1, pp. 41–49, 2002.

• [18] S. Mishra et al., “Carbofuran toxicity and its microbial degradation in contaminated environments,” Chemosphere, vol. 259, p. 127419, Nov. 2020, doi: 10.1016/j.chemosphere.2020.127419.

• [19] Y. Luo, X. Yue, P. Wei, A. Zhou, X. Kong, and S. Alimzhanova, “A state-of-the-art review of quinoline degradation and technical bottlenecks,” Science of The Total Environment, vol. 747, p. 141136, Dec. 2020, doi: 10.1016/j.scitotenv.2020.141136.

• [20] P. Sudarsanam, R. Zhong, S. Van den Bosch, S. M. Coman, V. I. Parvulescu, and B. F. Sels, “Functionalised heterogeneous catalysts for sustainable biomass valorisation,” Chem Soc Rev, vol. 47, no. 22, pp. 8349–8402, 2018, doi: 10.1039/C8CS00410B.

• [21] A. F. Lee, J. A. Bennett, J. C. Manayil, and K. Wilson, “Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification,” Chem. Soc. Rev., vol. 43, no. 22, pp. 7887–7916, 2014, doi: 10.1039/C4CS00189C.

• [22] D. Rodríguez-Padrón et al., “Exploring the potential of biomass-templated Nb/ZnO nanocatalysts for the sustainable synthesis of N-heterocycles,” Catal Today, vol. 368, pp. 243–249, May 2021, doi: 10.1016/j.cattod.2020.06.076.

• [23] Z. Xue, D. Yu, X. Zhao, and T. Mu, “Upgrading of levulinic acid into diverse N-containing functional chemicals,” Green Chemistry, vol. 21, no. 20, pp. 5449–5468, 2019, doi: 10.1039/C9GC02415H.

• [24] M. Hong, X. Tang, L. Falivene, L. Caporaso, L. Cavallo, and E. Y.-X. Chen, “Proton-Transfer Polymerization by N -Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters,” J Am Chem Soc, vol. 138, no. 6, pp. 2021–2035, Feb. 2016, doi: 10.1021/jacs.5b13019.

• [25] Y. Qi et al., “Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock,” Nat Commun, vol. 10, no. 1, p. 2107, May 2019, doi: 10.1038/s41467-019-10178-0.

• [26] E. Vitaku, D. T. Smith, and J. T. Njardarson, “Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals,” J Med Chem, vol. 57, no. 24, pp. 10257–10274, Dec. 2014, doi: 10.1021/jm501100b.

• [27] G. Gao et al., “Highly Stable Porous-Carbon-Coated Ni Catalysts for the Reductive Amination of Levulinic Acid via an Unconventional Pathway,” ACS Catal, vol. 7, no. 8, pp. 4927–4935, Aug. 2017, doi: 10.1021/acscatal.7b01786.

• [28] Z. Xue, Q. Liu, J. Wang, and T. Mu, “Valorization of levulinic acid over non-noble metal catalysts: challenges and opportunities,” Green Chemistry, vol. 20, no. 19, pp. 4391–4408, 2018, doi: 10.1039/C8GC02001A.

• [29] J. Zhang et al., “Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation-Amination of Levulinic Acid to Pyrrolidones,” ChemCatChem, vol. 9, no. 14, pp. 2661–2667, Jul. 2017, doi: 10.1002/cctc.201600739.

• [30] C. M. Cova and R. Luque, “Advances in mechanochemical processes for biomass valorization,” BMC Chemical Engineering, vol. 1, no. 1, p. 16, Dec. 2019, doi: 10.1186/s42480-019-0015-7.

• [31] D. Rodríguez-Padrón, A. R. Puente-Santiago, A. M. Balu, A. A. Romero, M. J. Muñoz-Batista, and R. Luque, “Benign-by-Design Orange Peel-Templated Nanocatalysts for Continuous Flow Conversion of Levulinic Acid to N-Heterocycles,” ACS Sustain Chem Eng, vol. 6, no. 12, pp. 16637–16644, Dec. 2018, doi: 10.1021/acssuschemeng.8b03896.

• [32] S. V. H. S. Bhaskaruni, S. Maddila, K. K. Gangu, and S. B. Jonnalagadda, “A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts,” Arabian Journal of Chemistry, vol. 13, no. 1, pp. 1142–1178, Jan. 2020, doi: 10.1016/j.arabjc.2017.09.016.

• [33] L. M. De Coen, T. S. A. Heugebaert, D. García, and C. V. Stevens, “Synthetic Entries to and Biological Activity of Pyrrolopyrimidines,” Chem Rev, vol. 116, no. 1, pp. 80–139, Jan. 2016, doi: 10.1021/acs.chemrev.5b00483.

• [34] M. D. Hill, “Recent Strategies for the Synthesis of Pyridine Derivatives,” Chemistry - A European Journal, vol. 16, no. 40, pp. 12052–12062, Oct. 2010, doi: 10.1002/chem.201001100.

• [35] C. Liu et al., “Efficient Approach To Discover Novel Agrochemical Candidates: Intermediate Derivatization Method,” J Agric Food Chem, vol. 64, no. 1, pp. 45–51, Jan. 2016, doi: 10.1021/jf5054707.

• [36] B. F. Abdel-Wahab, S. Shaaban, and G. A. El-Hiti, “Synthesis of sulfur-containing heterocycles via ring enlargement,” Mol Divers, vol. 22, no. 2, pp. 517–542, May 2018, doi: 10.1007/s11030-017-9810-3.

• [37] M. Feng, B. Tang, S. H. Liang, and X. Jiang, “Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry,” Curr Top Med Chem, vol. 16, no. 11, pp. 1200–1216, Mar. 2016, doi: 10.2174/1568026615666150915111741.

• [38] L. Schutte and R. Teranishi, “Precursors of sulfur‐containing flavor compounds,” C R C Critical Reviews in Food Technology, vol. 4, no. 4, pp. 457–505, Mar. 1974, doi: 10.1080/10408397409527166.

• [39] P. S. Phale, A. Sharma, and K. Gautam, “Microbial degradation of xenobiotics like aromatic pollutants from the terrestrial environments,” in Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, Elsevier, 2019, pp. 259–278. doi: 10.1016/B978-0-12-816189-0.00011-1.

• [40] N. H. Tran, T. Urase, and O. Kusakabe, “The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds,” J Hazard Mater, vol. 171, no. 1–3, pp. 1051–1057, Nov. 2009, doi: 10.1016/j.jhazmat.2009.06.114.

• [41] E. Fernandez-Fontaina, I. B. Gomes, D. S. Aga, F. Omil, J. M. Lema, and M. Carballa, “Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions,” Science of The Total Environment, vol. 541, pp. 1439–1447, Jan. 2016, doi: 10.1016/j.scitotenv.2015.10.010.

• [42] F. Li et al., “Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System,” Appl Environ Microbiol, vol. 71, no. 1, pp. 276–281, Jan. 2005, doi: 10.1128/AEM.71.1.276-281.2005.

• [43] Y. Mu et al., “Bacterial catabolism of nicotine: Catabolic strains, pathways and modules,” Environ Res, vol. 183, p. 109258, Apr. 2020, doi: 10.1016/j.envres.2020.109258.

• [44] F. Ali et al., “Characterization of a Dibenzofuran-degrading strain of Pseudomonas aeruginosa, FA-HZ1,” Environmental Pollution, vol. 250, pp. 262–273, Jul. 2019, doi: 10.1016/j.envpol.2019.04.026.

Additional Files

Published

2023-08-03

How to Cite

da Silva Martins, L. H. ., Rodrigues Barbosa, J. ., Baleixo da Silva, S. ., Portal Gomes, P. W. ., Komesu, A. ., Vasconcelos da Silva Pereira, G. ., … Goltara Bichara, C. M. . (2023). Microbial Degradation of Heterocycles- A Review. Journal of Science & Sustainable Engineering , 1(1). https://doi.org/10.34024/jsse.2023.v1.15462

Most read articles by the same author(s)