Influence of Chemical Cleaning Procedures and Thermal Oxidation Processes on the Uniformity of MOS Gate Oxides on Abrupt Steps on Silicon Surfaces


  • Mr. R. Souza University of São Paulo (USP)
  • Mr. W.A. Nogueira University of São Paulo (USP)
  • Mr. S.G. dos Santos Filho University of São Paulo (USP)



Chemical Cleaning, MOS structure, silicon oxide growth


This work analyzes the influence of some chemical steps used in standard cleaning recipes on the surface micro-roughness of silicon wafers. The effect of varying the ammonium hydroxide concentration in the NH4OH: H2O2:H2O solution was studied and silicon wafer micro-roughness was characterized by atomic force microscopy technique at different scans of 1µmx1µm. Based on the results, it was possible to point the condition to obtain low surface micro-roughness for NH4OH-based solutions with the lowest NH4OH content before the growth of gate oxides. Following, it silicon-oxide thin films were grown onto periodic rectangular shapes, 100 nm in height, obtained by localized plasma etching on silicon wafer surfaces. Silicon oxides (SiO2), about 4.5 nm thick, were grown in ultrapure dry-O2 or pyrogenic (O2 + H2) environments in order to compare the planar uniformity and the grade of coverage at the step edges of rectangular shapes defined onto silicon surfaces. Pyrogenic and conventional oxidation at 850 oC allowed one to obtain gate oxides on 100 nm-stepped silicon surfaces with high dielectric breakdown field (>10 MV/cm), good planar uniformity and conformal coverage at the step edges. The impact of this result is now the feasibility of fabricating good-quality gate oxides for surrounding gate transistors (SGT’s) and texturized MOS solar cells.


Download data is not yet available.

Author Biography

Mr. R. Souza, University of São Paulo (USP)

University of São Paulo (USP)


• [1] R. H. Dennard, “Design of Ion-Implanted MOSFET’s With

• Very Small Physical Dimensions.” IEEE J. of Solid State Circuits, vol. 98, no.5, pp. 256, 1974.

• [2] A. W. Topol et al., "Three-dimensional integrated circuits," in IBM Journal of Research and Development, vol. 50, no. 4.5, pp. 491-506, July 2006 (doi: 10.1147/rd.504.0491).

• [3] M. N. Watanabe, W. Chiappim, V. Christiano and S. G. d. S. Filho, "MOS solar cells for indoor LED energy harvesting: influence of the grating geometry and the thickness of the gate dielectrics," in Proc. 34th Symposium on Microelectronics Technology and Devices, São Paulo, SP, Brazil, 2019, pp. 1-4 (doi: 10.1109/SBMicro.2019.8919375).

• [4] T. F. Lei et al. “Characterization of Polysilicon Oxides Thermally Grown and Deposited on Electronic Roughness”. IEEE Trans. on Electron Devices, vol. 45, no. 4, pp. 912-917, 1998.

• [5] S.G. dos Santos Filho, C. M. Hasenack, M.C. V. Lopes et al. “Rapid Thermal Oxidation of Silicon With Different Thermal Annealing Cycles in Nitrogen: Influence on Surface Microroughness and Electrical Characteristics”, Semiconductor Science and Technology, vol. 10, pp. 990-996, 1995.

• [6] Klein, N.; Nevanlinha, O. “Lowering of The Breakdown Voltage of Silicon Dioxide by Asperities and Spherical Electrodes”. Solid State Electronics, vol. 20, no.9, pp. 883, 1983.

• [7] M. C. V. Lopes, S. G. dos Santos Filho, C.M. Hasenack et al., “Si- SiO2 electronic interface roughness as a consequence of Si-SiO2 topographic interface roughness”, J. Electrochem. Soc. vol. 143, no. 3, pp. 1021-1025, 1996.

• [8] D. M. Knotter, S. Gendt, P. W. Mertens, M. M. Heyns, “Silicon Surface Roughening Mechanisms in Ammonia Hydrogen Peroxide Mixtures”, J. Electrochem. Soc., vol. 147 no. 2, pp. 736-740, 2000.

• [9] M. Meuris, S. Verhaverbeke, P. W. Mertens et al; “The Relationship of the Silicon Surface Roughness and Gate Oxide Integrity in NH4OH/H2O2 Mixtures”, Jpn. J. Appl. Phys., vol. 31, no. 11A, pp. L1514-1517, nov. 1992.

• [10] W. Kern, Handbook of Semiconductor Wafer Cleaning Tecnology, Noyes Publications, New Jersey, 1993.

• [11] M. Houssa, T. Nigam, P.W. Mertens, M. M. Heyns, Solid State Electronics, vol. 25, pp. 159, 1999.

• [12] S. G. dos Santos Filho, C. M. Hasenack, L. C. Salay, P. W. Mertens, J. Electrochem. Soc., vol. 142, no. 902, 1995.

• [13] M. Terauchi, N. Shigyo, A. Nitayama, F. Horiguchi, IEEE Trans. on Elec. Dev., vol. 44 pp. 2303, 1997.

• [14] X. Huang, IEEE Trans. on Elec. Dev., vol. 48, pp. 1344, 2001.

• [15] D. Rouchon, N. Rochat, F. Gustavo, A. Ghabli, O. Renault, P. Besson, Surface and Interface Analysis, vol. 34, pp. 445, 2002.

• [16] W. Lerch, G. Roters, P. Muninger, R. Mader, R. Ostermeir, Materials Science and Engineering, vol. B54, pp. 153, 1998.

• [17] K. Kimura, K. Nakakima, Applied Surface Science, vol. 216, pp. 283, 2003.

• [18] P. Balk, The Si-SiO2 System, Elsevier, The Netherlands, 1988 (Materials Science Monographs 32).

• [19] E. H. Nicollian, J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York 1982.

• [20] AFM/LFM Scanning Probe Microscope Instrunction Manual. Digital Instruments Inc., 1997. Digital Instruments, Imcorporated 112 Robin Hill Road. Santa Barbara, Californica 93117. USA.

• [21] W.A. Nogueira., Obtenção de óxidos de porta MOS ultrafinos: Influência da limpeza química e estudo da ruptura elétrica. Tese de Doutorado (2003). Escola Politécnica da USP, São Paulo (SP).

• [22] T. Ohmi, M. Myashita, M. Ittano et al; “Dependence of Thin-Oxide Films Quality on Surface Microroughness”, IEEE Trans. On Electron Devices, vol. 39, no. 3, pp. 537-545, 1992.

• [23] M. Terauchi, N. Shigyo, A. Nitayama, F. Horiguchi, IEEE Trans. on Elec. Dev., vol. 44 pp. 2303, 1997.

• [24] S. M. Sze, Physics of Semiconductor Devices, Wiley, NewYork, 1981.

Additional Files



How to Cite

Souza, R. ., Nogueira, W. ., & dos Santos Filho, S. . (2023). Influence of Chemical Cleaning Procedures and Thermal Oxidation Processes on the Uniformity of MOS Gate Oxides on Abrupt Steps on Silicon Surfaces. Journal of Science & Sustainable Engineering , 1(1).