Mimosa Pudica as a model for the study of sensitivity and cognition in plants as a model for the study of sensitivity and cognition in plants

Authors

DOI:

https://doi.org/10.34024/prometeica.2024.30.16500

Keywords:

stimulus, response, model-organism, learning, memory

Abstract

The sensitive plant Mimosa Púdica is a particular type of plant that has leaves capable of responding to contact in a matter of seconds, causing them to retract and appear to be withered. It is one of the few plants that initiate movements visually perceptible to humans. Regarding the incipient research on sensitivity and cognition in plants, Mimosa seems to be an interesting model organism to analyze these possibilities thanks to its rapid responses that can be observed directly. In this way, Mimosa Púdica could be used as a model for the study of the phenomenon of sensitivity and cognition, not only at the electrophysiological level, but also at the behavioral and functional level. Based on the scientific evidence of biology and neuroscience of the last 15 years, it will be argued that the sensitive plant is a suitable model organism to study, not only at a physiological-mechanical level, the ability of plants to respond to stimuli, but also to evaluate that so many cognitive abilities, such as learning and memory, are attributable to plant organisms from the responses observable in said model. The above is postulated in relation to the idea that all plant organisms initiate movements, but not all of them are observable by humans: Mimosa would then be a useful model for analysis, since it presents movements that can be observed by researchers and It would allow the evaluation of different capacities related to the phenomena of sensitivity and cognition.

Metrics

Metrics Loading ...

Author Biography

  • Lucas Hinojosa-López, Universidad de Valparaíso

    -Licenciado en Filosofía y Licenciado en Educación por la Universidad de Valparaíso
    -Profesor Ayudante en la carrera de Psicología de la Universidad de Valparaíso.
    -Ayudante de Investigación Centro de Estudios en Filosofía, Lógica y Epistemología (CeFiLoE) en la Universidad de Valparaíso
    -Estudiante del Magíster en Filosofía, mención Lógica y Filosofía de las ciencias en la Universidad de Valparaíso

References

Abramson, C. I., & Chicas-Mosier, A. M. (2016). Learning in Plants: Lessons from Mimosa pudica. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00417

Abramson, C.I., Garrido, D.J., Lawson, A.L., Browne, B.L., and Thomas, D. G. (2002). Bioelectrical potentials of Philodendroncordatum: a new method for the investigation of behavior in plants. Psychol. Rep. 91, 173–185. doi: 10.2466/pr0.2002.91.1.173

Adey, W. R. (2004). Potential therapeutic application of nonthermal electromagnetic fields: Ensemble organization of cells in tissue as a factor in biological tissue sensing. In P. J. Rosch, & M. S. Markov (Eds.), Bioelectromag. Med (pp. 1–15). New York: Marcel Dekker.

Animal Ethics (s.f.). What beings are not conscious. https://www.animal-ethics.org/beings-conscious/ Consultado: 09/10/2023.

Applewhite, P. B. (1975). “Learning in bacteria, fungi, and plants” in Invertebrate Learning. Cephalopods and Echinoderms, Vol. 3, eds W.C. Corning, J.A. Dyal, and A.O.D. Willows (New York, NY: Plenum), 179–186.

Applewhite, P. B. (1972). Behavioral plasticity in the sensitive plant, Mimosa. Behav. Biol. 7, 47–53. doi:10.1016/S0091-6773(72)80187-1

Ankeny, R., & Leonelli, S. (2020). Model organisms. Cambridge University Press.

Baluška, F. (2010). Recent surprising similarities between plant cells and neurons. Plant Signaling & Behavior, 5, 87–89.

Barnett,S.A. (1963). The Rat: A Study in Behavior. Chicago, IL: Aldine Publishing Company.

Bohm, J., Scherzer, S., Krol, E., Kreuzer, I., von Meyer, K., Lorey, C., Hedrich, R. (2016). The Venus fly trap Dioneaea muscipula counts prey‐induced action potentials to induce sodium uptake. Current Biology, 26, 286-295.

Bolker, J. A. (2009). Exemplary and surrogate models: two modes of representation in biology. Perspectives in Biology and Medicine, 52(4), 485-499. https://doi.org/10.1353/pbm.0.0125

Bose, J. C. (1926). The nervous mechanism of plants. London: Longmans, Green and Co, Ltd.

Bose, J. C., & Guha, S. C. (1922). The diaheliotropic attitude of leaves as determined by transmitted nervous excitation. Proceedings of the Royal Society B, 93, 153–178.

Bose, J. C. (1906). Plant Response. London: Longmans.

Calvo, P., Sahi, V. P., & Trewavas, A. (2017). Are plants sentient? Plant Cell and Environment, 40(11), 2858-2869. https://doi.org/10.1111/pce.13065

Calvo, P., & Friston, K. (2017). Predicting green: Really radical (plant) predictive processing. Journal of the Royal Society Interface, 14, 20170096

Cisek, P. (2019). Resynthesizing behavior through phylogenetic refinement. Attention, Perception, & Psychophysics, 81(7), 2265-2287. https://doi.org/10.3758/s13414-019-01760-1

Dudley, S. A., & File, A. L. (2007). Kin recognition in an annual plant. Biology Letters, 3(4), 435-438. https://doi.org/10.1098/rsbl.2007.0232

Frigg, R., & Hartmann, S. (2018). ‘Models in Science’. In The Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/archives/sum2018/entries/models-science/.

Gagliano, M., Mancuso, S., & Robert, D. (2012). Towards understanding plant bioacoustics. Trends in Plant Science, 17(6), 323-325. https://doi.org/10.1016/j.tplants.2012.03.002

Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175(1), 63-72. https://doi.org/10.1007/s00442-013-2873-7

Gagliano, M., Vyazovskiy, V. V., Borbély, A. A., Grimonprez, M., & Depczynski, M. (2016). Learning by Association in Plants. Scientific Reports, 6(1). https://doi.org/10.1038/srep38427

Gagliano, M. (2017) The mind of plants: Thinking the unthinkable. Communicative & Integrative Biology, 10(2). https://doi.org/10.1080/19420889.2017.1288333

Guiguet, A. (2013). Plant Learning: An Unresolved Question. Master BioSciences. thesis, Ecole Normale Supérieure de Lyon, Lyon.

Hagihara, T., Matsubara, H., Miura, T., Hasebe, M., & Toyota, M. (2022). Calcium-mediated rapid movements defend against herbivorous insects in mimosa pudica. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34106-x

Holmes, E.,and Gruenberg, G.(1965). Learning in plants. Worm Runner’s Dig. 7, 9–12.

Hommel, B., & Colzato, L. S. (2015). Learning from history: The need for a synthetic approach to human cognition. Frontiers in Psychology, 6, 1435. https://doi.org/10.3389/fpsyg.2015.01435

Hurley, S. (2001). Perception and Action: Alternative views. Synthese, 129, 3–40.

Kandel, E. R., Dudai, Y., & Mayford, M. (2014). The Molecular and Systems Biology of Memory. Cell, 157(1), 163-186. https://doi.org/10.1016/j.cell.2014.03.001

Lee, J., & Calvo, P. (2023). The potential of plant action potentials. Synthese, 202(6). https://doi.org/10.1007/s11229-023-04398-7

Levy, A., & Currie, A. (2015). Model organisms are not (Theoretical) models. The British Journal for the Philosophy of Science, 66(2), 327-348. https://doi.org/10.1093/bjps/axt055

Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S., & Koornneef, M. (1998). Arabidopsis thaliana : A model plant for genome analysis. Science, 282(5389), 662-682. https://doi.org/10.1126/science.282.5389.662

Nabors, M. (2006). Introducción a la botánica. Boston, Massachusetts: Addison Wesley

Pfeffer, W. (1906). The Physiology of Plants, (A.J. Ewart, trans.). Oxford: Clarendon

Pfeffer, W. (1873). Physiologische Untersuchungen. Leipzig: W. Engelmann

Published

2024-07-08

How to Cite

Hinojosa-López, L. (2024). Mimosa Pudica as a model for the study of sensitivity and cognition in plants as a model for the study of sensitivity and cognition in plants. Prometeica - Journal of Philosophy and Science, 30, 131-143. https://doi.org/10.34024/prometeica.2024.30.16500
Received 2024-03-25
Accepted 2024-05-22
Published 2024-07-08