El techo de cristal cuadrado y sus consecuencias




Palabras clave:

alfabetización matemática, accesibilidad, álgebra, geometría, cálculo


Durante los últimos treinta años, el Proyecto Álgebra ha trabajado con una diversidad de partes interesadas (padres, socios universitarios, administradores, maestros y sus estudiantes) para elevar el nivel de alfabetización matemática para los estudiantes más desatendidos en los sistemas escolares de EE. UU. En el curso de este trabajo, hemos llegado a reconocer un techo de cristal con el que deben lidiar los estudiantes más desatendidos y sus maestros. Ha bloqueado el acceso a temas que históricamente se han considerado avanzados, pero que en realidad son accesibles para los estudiantes en los niveles de Álgebra I y Geometría. Ha alimentado debates comunitarios sobre cuántas matemáticas son demasiadas para algunos estudiantes e insuficientes para otros. En este artículo, examinaremos algunos ejemplos de Álgebra I y Geometría, que muestran claramente esta accesibilidad. Estos ejemplos demuestran que es necesario reconstruir un piso apropiado para la alfabetización matemática en el siglo XXI para tener en cuenta la brecha entre lo que se podría enseñar y lo que se enseña en matemáticas secundarias.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

William Crombie, The Algebra Project

William (Bill) Crombie is the Director of Professional Development for The Algebra Project, Inc. Since 1990, Bill has been involved in developing and delivering professional development for teachers and professional developers within the Algebra Project’s national network. In collaboration with Bob Moses, the founder of the Algebra Project, Bill has worked on developing the Transition Curriculum, short curriculum modules, and the African Drum and Ratios Curriculum. He is also the principal author of the Train-the-Trainer’s Transition Curriculum Practice Units and Lecture Notes and the principal developer of the Accessible Calculus Curriculum. Bill has worked as a site development consultant to a number of school systems and communities across the nation in their efforts to establish local algebra projects: Boston, Cambridge, Chicago, North Chicago, Louisville, Los Angeles, Milwaukee, Marlboro County, SC, Plainfield, NJ, and New York City. From 1994 to 1998 he was the director of the Chicago Algebra Project. Overall, his work has focused on increasing access to quality mathematics education for students from underserved communities. 


Almora Rios, M., & Burdman, P. (2023). Staying the Course: Examining College Students’ Paths to Calculus. Just Equations.

Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. Elementary School Journal, 90, 449–466.

Bergmann, P. G., (1949). Basic Theories of Physics. New York: Prentice-Hall.

Bransford, J. D., Brown, A. L., & Cocking, R.R. (1999). How people learn: Brain, mind, experience, and school. Washington, DC: National Research Council.

Carol, W. (2009, March) Tangent Lines without Derivatives for Quadratic and Cubic Equations, The Mathematics Teacher, 102(7), 516–519.

Clements, D. H,. Battista, M. T., (1990). Cognitive Learning and Teaching. The Arithmetic Teacher, 38(1), 34-35.

Crombie, W., & Grant, M. (2012). Polynomial calculus: Rethinking the role of architecture and access to advanced study [Topic Study Group 13]. Pre-proceedings of the Twelfth International Congress on Mathematics Education (pp. 2670–2679), Seoul, Korea.

Ellis, A. B., & Grinstead, P. (2008). Hidden lessons: How a focus on slope-like properties of quadratic functions encourage unexpected generalizations. The Journal of Mathematical Behavior, 27, 277–296.

Eureka Math: A Story of Functions. Algebra I. Module 4, Polynomials, Quadratic Expressions, Equations, and Functions. (2015). San Francisco: Jossey-Bass.

Dubinsky, E. & McDonald, M. A. (2001). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. In: D. Holton, M. Artigue, U. Kirchgraber, J. Hilllel, M. Niss, A. Schoenfeld (Ed.s) The Teaching and Learning of Mathematics at University Level. New ICMI Study Series, volume 7, Springer, Dordrecht.

Hass, J., Weir, M. D., & Thomas, G. B. (2012). University Calculus: Early Transcendentals. Addison-Wesley.

Kaput, J. (1997). Rethinking Calculus: Learning and Teaching, American Mathematical Monthly, 104(8), 73 –737.

Klein, F., (1932). Elementary Mathematics from An Advanced Standpoint, New York: Macmillian.

Luchins, A. S. & Luchins, E. H. (1990). The Einstein-Wertheimer Correspondence on Geometric Proofs and Mathematical Puzzles. Mathematical Intelligencer. 12(2), 35– 43.

Maloney, A. P., Confrey, J., & Nguyen, K. H., (Eds.) (2014). Learning over time: Learning trajectories in mathematics education. IAP Information Age Publishing.

Moshovitz-Hadar, N., (1993). A Constructive Transition from Linear to Quadratic Functions. School Science and Mathematics. 93(6), 288–298.

Moses, B. (2021). Returning to “Normal” in Education is Not Good Enough. The Imprint. https://imprintnews.org/opinion/returning-to-normal-in-education-is-not-good-enough/58069

NCES/National Center for Educational Statistics. (2019). National assessment of educational progress: Mathematics. U.S. Department of Education and the Institute of Education Sciences.

NGACBP & CCSSO. (2010). Common Core state standards mathematics. National Governors Association Center for Best Practices & Council of Chief State School Officers.

Rabin, J. (2008, March). Tangent Lines without Calculus, The Mathematics Teacher, 101(7), 499–503.

Rosenstein, J. G. & Ahluwalia, A. (2017). Putting the brakes on the rush to AP Calculus. In D. Bressoud (Ed.), The Role of Calculus in the Transition from High School to College Mathematics (pp 27–40). MAA Press.

Shulman, L. S. (1986). Those who understand: Knowledge Growth in teaching. Educational Researcher, 15(2), 4–14.

Steffe, L. P. & D’Ambrosio, B. S. (1995). Toward a working model of constructivist teaching: A reaction to Simon. Journal for Research in Mathematics Education, 26, 146–159.

Thompson, P. (2008). One approach to coherent K–12 mathematics: Or, it takes 12 years to learn calculus. Pathways to Algebra Conference, Mayenne, France.

Van de Veer, R., & Valsiner, J. (Eds.) (1994). The Vygotsky Reader. Oxford: Blackwell.

Whitehead, A., N., (1929). The Aims of Education and Other Essays. New York: The Free Press.




Cómo citar

Crombie, W. (2023). El techo de cristal cuadrado y sus consecuencias. Prometeica - Revista De Filosofía Y Ciencias, (27), 494–504. https://doi.org/10.34024/prometeica.2023.27.15336
Recebió: 2023-07-10
Publicado: 2023-07-27

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.