Epistemological simplifications and associated risks

The technology of biological control of non-native species

Authors

DOI:

https://doi.org/10.34024/prometeica.2023.28.14529

Keywords:

invasion biology, ecology, biological control, epistemic bases, epistemological simplification

Abstract

Biological control of non-native species that cause economic and environmental damage is the most relevant technology in Invasion Biology. Although there is agreement that this technology is more environmentally friendly than chemical control, there are open discussions about associated risks. In this paper, we analyze, using scientific review articles as sources, the epistemic bases underlying the development and evaluation of risks associated with biological control, mainly if epistemological simplification occurs and its role in underestimating risks. The analysis shows that four interrelated types of epistemological simplification occur: i) interactions between the control agent and target or non-target species are mainly one-to-one, physiological, linearized and decontextualized; ii) the predominance of organismic and infra-organismic levels as relevant factors in connection with theories and concepts of Ecophysiology, which obviates interactions, processes and mechanisms that occur at the community and ecosystem level, and the associated theoretical frameworks of Ecology; iii) exclusion of relevant evolutionary mechanisms such as adaptation and post-introduction phenotypic plasticity; iv) restriction of temporalities and spatialities to those of physiological and behavioural processes of the organismic level or lower. This scenario results in an underestimation, or direct omission, of environmental risks, such as potential alterations that the biological control event can impose on non-target species; and community and ecosystem processes and mechanisms.

Metrics

Metrics Loading ...

Author Biographies

  • Nicolás José Lavagnino, Universidad de Buenos Aires - CONICET

    Nicolás José Lavagnino es Doctor en Ciencias Biológicas por la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires (Argentina). Desde hace casi 20 realiza tareas de investigación en el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Argentina. Sus investigaciones iniciales fueron en Biología Evolutiva y Ecología tanto experimental como teórica, para luego pasar a realizar investigación en Filosofía de la Biología, en la temática de los vínculos entre el conocimiento biológico, sus tecnologías y el rol de las mismas en nuestras sociedades. Ha publicado más de 20 artículos científicos, libros, capítulos de libros y particionado en 29 congresos y jornadas nacionales, y 33 internacionales.

  • Christian Francese, Universidad de Buenos Aires - CONICET

    Christian Federico Francese es egresado de la Licenciatura en Ciencias Biológicas de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires. Actualmente realiza su doctorado en Filosofía en la misma universidad. Es miembro del Grupo de Filosofía de la Biología, instancia de investigación interdisciplinaria de la Universidad de Buenos Aires. Es docente y ha escrito artículos en revistas especializadas. En sus investigaciones aborda la temática del reduccionismo, la relación entre ciencia y tecnología, y el lugar de la ciencia en las políticas públicas.

  • Federico di Pasquo, Universidad de Buenos Aires - CONICET

    Egresado de la carrera de Biología por la Facultad de Ciencias Exactas y Naturales (UBA), con especialidad en Ecología. Defendió su Doctorado en Biología, en temas de Historia y Epistemología de la Ecología, por la misma Facultad. A su vez, su Pos-doctorado se dirigió a la Epistemología de la Ecología, por la Facultad de Filosofía y Letras (UBA). Se desempeña como Investigador, en el área de Filosofía, en el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fue docente de la materia Introducción al Pensamiento Científico (CBC-UBA) y actualmente, es docente de la materia de Historia de las Ciencias (Fcen-UBA). Imparte diferentes cursos de posgrado en temas de Epistemología Ambiental y Problemáticas Ambientales y forma parte del Grupo de Investigación de Filosofía de la Biología.

References

Allen, T. F. H., & Starr, T. B. (1982). Hierarchy: Perspectives for ecological complexity. Chicago, IL: The University of Chicago Press.

Babendreier, D., Bigler, F., & Kuhlmann, U. (2005). Methods used to assess non-target effects of invertebrate biological control agents of arthropod pests. BioControl. 50(6), 821-870.

Binimelis, R., Born, W., Monterroso, I., & Rodríguez-Labajos, B. (2007). Socio-Economic Impact and Assessment of Biological Invasions. En W. Nentwig (Ed.), Biological Invasions. Ecological Studies (Analysis and Synthesis). (pp. 331-347). Berlin, Alemania: Springer.

Briese, D.T. (2003). The centrifugal phytogenetic method used to select plants for host-specificity testing of weed biological control agents: Can and should it be modernised?. En J. H. Spafford et al. (Eds.). Improving the Selection, Testing and Evaluation of Weed Biological Control Agents. Technical Series No. 7. (pp. 23-33). Perth, Western Austra: CRC Australian Weed Managemen.

Briese, D.T. (2006). Host specificity testing of weed biological control agents: initial attempts to modernize the centrifugal phylogenetic method. CCBC, V, 32-39.

Bunge, M. (1966). Technology as applied science. Technology and Culture, 7(3), 329-347.

Davidson, A.M., Jennions, M., & Nicotra, A.B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14(4), 419-431.

Davis, M.A. (2009). Invasion Biology. Oxford, UK: Oxford University Press.

Echeverría, J. (2003). La revolución tecnocientífica. Madrid, España: Fondo de Cultura Económica.

Ehrenfeld, J.G. (2010). Ecosystem Consequences of Biological Invasions. Annual Review of Ecology, Evolution, and Systematics, 41(1), 59-80.

Fordyce, J.A. (2006). The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. Journal of Experimental Biology, 209(12), 2377-2383.

Fowler, S.V., Paynter, Q., Dodd, S., & Groenteman, R. (2012). How can ecologists help practitioners minimize non-target effects in weed biocontrol?. Journal of Applied Ecology, 49(2), 307-310.

Francese, C., & Folguera, G. (2018). Saberes simplificados, tecnociencia y omisión de riesgos. El caso de los organismos genéticamente modificados. RUNA, 39(2), 5-28.

Frank, J.H. (1998). How risky is biological control?. Ecology, 79(5), 1829-1834.

Frank, D.M., Simberloff, D., Bush, J., Chuang, A., & Leppanen, C. (2019). Logical fallacies and reasonable debates in invasion biology: a response to Guiaşu and Tindale. Biology and Philosophy, 34(5), 1-11.

Guiaşu, R.C., & Tindale, C.W. (2018). Logical fallacies and invasion biology. Biology and Philosophy, 33(5-6), 1-24.

Huang, S. (2015). Limits to Deterministic-Linear Causality in Biomedicine: Effects of Stochasticity and Non-Linearity in Molecular Networks. En M. Bertolaso (Ed.). The Future of Scientifc Practice:‘bio-techno-logos’. (pp. 41-64). Pickering y Chatto.

Hulme, P.E. (2008). Phenotypic plasticity and plant invasions: Is it all Jack?. Functional Ecology 22(1), 3-7.

Kaufman, L.V., & Wright, M.G. (2017). Assessing probabilistic risk assessment approaches for insect biological control introductions. Insects, 8(3), 67.

Kaufman, S.R., & Smouse, P.E. (2001). Comparing indigenous and introduced populations of Melaleuca quinquenervia (Cay.) Blake: Response of seedlings to water and pH levels. Oecologia, 127(4), 487-494.

Lacey, H. (1999). Scientific understanding and the control of nature. Science & Education, 8(1), 13-35.

Lacey, H. (2003). Seeds and their sociocultural nexus. En R. Figueroa & S. Harding (Eds.), Science and Other Cultures: Issues in Philosophies of Science and Technology. (pp. 91-105). New York, NY: Routledge.

Lacey, H. (2012). Reflections on science and technoscience. Scientiae studia, 10, 103-128.

Lavagnino, N.J., Barbero, S., & Folguera, G. (2018). Caracterización, alcances y dificultades de las «bases biológicas» del Trastorno por Déficit de Atención e Hiperactividad (TDAH). Un enfoque desde la Filosofía de la Biología. Physis, 28(1), e280110.

Linares, J.E. (2008). Ética y mundo tecnológico. Ciudad de México, México: Fondo de Cultura Económica.

Louda, S.M., Pemberton, R.W., Johnson, M.T., & Follett, P.A. (2003). Nontarget Effects - The Achilles' Heel of Biological Control? Retrospective Analyses to Reduce Risk Associated with Biocontrol Introductions. Annual Review of Entomology, 48(1), 365-396.

Louda, S.M., & Stiling, P. (2004). The Double-Edged Sword of Biological Control in Conservation and Restoration. Conservation Biology, 18(1), 50-53.

McEvoy, P.B. (1996). Host specificity and biological pest control. BioScience, 46(6), 401-405.

Marone, L., & Bunge, M. (1998). La explicación en ecología. Boletín de la Asociación Argentina de Ecología, 7(2), 35-37.

Martinhago, F., Lavagnino, N.J., Folguera, G., & Caponi, S. (2019). Risk factors and genetic bases: The case of attention deficit hyperactivity disorder. Salud Colectiva, 15(1), e1952.

Mazza, G., Tricarico, E., Genovesi, P., & Gherardi, F. (2014). Biological invaders are threats to human health: An overview. Ethology Ecology and Evolution, 26(2-3), 112-29.

McKimmie, T. (2000). The literature and practice of biological control. Journal of Agricultural and Food Information, 4(1), 3-19.

Messing, R.H., & Wright, M.G. (2006). Biological control of invasive species: Solution or pollution?. Frontiers in Ecology and the Environment, 4(3), 132-140.

Parker, I.M., Rodriguez, J., & Loik, M.E. (2003). An evolutionary approach to understanding the biology of invasions: Local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conservation Biology, 17(1), 59-72.

Pestre, D. (2005). Ciencia, política y dinero. Buenos Aires, Argentina: Nueva Visión.

Pickett, S.T.A., Kolasa, J., & Jones C.G. (2007). Ecological Understanding: The Nature of Theory and the Theory of Nature. Elsevier.

Pigliucci, M., & Preston, K. (Eds.). (2004). Phenotypic integration: Studying the ecology and evolution of complex phenotypes. New York, NY: Oxford University Press.

Pratt, P.D., & Center, T.D. (2012). Biocontrol without borders: The unintended spread of introduced weed biological control agents. BioControl, 57(2), 319-329.

Quintanilla, M.A. (1999). Tecnología: un enfoque filosófico. Buenos Aires, Argentina: EUDEBA.

Richards, C.L., Bossdorf, O., Muth, N.Z., Gurevitch, J., & Pigliucci, M. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9(8), 981-993.

Schlichting, C.D., & Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer Associates.

Secord, D., & Kareiva, P. (1996). Perils and pitfalls in the host specificity paradigm. BioScience, 46(6), 448-456.

Simberloff, D. (2012). Risks of biological control for conservation purposes. BioControl, 57(2), 263-276.

Simberloff, D., & Stiling P. (1996). Risks of species introduced for biological control. Biological Conservation, 78(1-2), 185-192.

Simberloff, D., & Stiling, P. (1998). How risky is biological control? Reply. Ecology, 79(5), 1834-1836.

Suarez, A.V., & Tsutsui, N.D. (2008). The evolutionary consequences of biological invasions. Molecular Ecology, 17(1), 351-360.

Tobin, P.C. (2018). Managing invasive species. F1000Research, 7, 1686.

Turner, M.G., Gardner, R.H., & O’Neill, R.V. (2001). Landscape ecology in theory and practice: pattern and process. New York, NY: Springer.

Urban, D.L., O’Neill, R.V., & Shugart, H.H. (1987). Landscape Ecology. A hierarchical perspective can help scientists understand spatial patterns. BioScience, 37(2), 119-27.

Wapshere, A.J. (1974). A strategy for evaluating the safety of organisms for biological weed control. Annals of Applied Biology, 77(2), 201-211.

Wiens, J.A., Van Horne, B., & Noon B.R. (200). Integrating landscape structure and scale into natural resource management. En J. Liu & W. Taylor (Eds.). Integrating Landscape Ecology into Natural Resource Management. (pp. 23-67 ). Cambridge, UK: Cambridge University Press.

van Wilgen, B.W., Moran, V.C., & Hoffmannn J.H. (2013). Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems. Environmental Management, 52(3), 531-540.

Williamson, M. (1996). Biological Invasions. London, UK: Chapman & Hall.

Zenni, R.D., Lamy, J-B., Lamarque, L.J., & Porté, A.J. (2014). Adaptive evolution and phenotypic plasticity during naturalization and spread of invasive species: Implications for tree invasion biology. Biological Invasions, 16(3), 635-644.

Zimmermann, H.G., Moran, V.C., & Hoffmann, J.H. (2000). The renowned cactus moth, Cactoblastis cactorum: Its natural history and threat to native Opuntia floras in Mexico and the United States of America. Diversity and Distributions, 6(5), 259-269.

Published

2023-11-11

How to Cite

Lavagnino, N. J., Francese, C. ., & di Pasquo, F. (2023). Epistemological simplifications and associated risks: The technology of biological control of non-native species. Prometeica - Journal of Philosophy and Science, 28, 53-73. https://doi.org/10.34024/prometeica.2023.28.14529
Received 2022-10-24
Accepted 2023-08-07
Published 2023-11-11