Las matemáticas como herramienta de opresion en los estados unidos

Autores/as

DOI:

https://doi.org/10.34024/prometeica.2023.27.15366

Palabras clave:

Galileu, Fibonacci, poder, opresión

Resumen

La reciente politización de las matemáticas ha generado cuestionamientos sobre su pedagogía en las escuelas estadounidenses, pero estos problemas no reconocen a las matemáticas como una herramienta potencialmente opresiva. En este ensayo, demuestro que hay fuerzas mucho más grandes disponibles que mejoran la forma en que las personas piensan sobre las matemáticas y cómo las personas las consideran en sus vidas es mucho más valiosa. Aquí, exploro brevemente tres eras distintas de desarrollo matemático que produjeron tres respuestas culturales distintas. El primero es Fibonacci, cuyo trabajo fue generalmente aceptado y evitó las críticas. El siguiente es Galileo, un matemático que enfrentó un importante retroceso y cuya investigación y progreso fueron detenidos y prohibidos. Luego miro a los Estados Unidos y destaco la capacidad de un gobierno para obtener el control de las estructuras matemáticas sin la capacidad de sofocar por completo la publicación y la investigación. Trazaré un arco a través de estas tres eras distintas para concluir la forma más efectiva de desmantelar las estructuras de poder basadas en las matemáticas: un esfuerzo mutuo para nivelar las jerarquías que involucran por igual a quienes están en el poder y a quienes están a merced de la estructura misma.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ani, K. (2021). Dear Citizen Math: How math class can inspire a more rational and respectful society. Damascus Rodeo.

Allen, L. (2009). The Encyclopedia of Money. United States: ABC-CLIO.

Atreya, S.K. (2010). Atmospheric moons Galileo would have loved: International Astronomical Union 2010. doi: 10.1017/S1743921310007349

Avila, E. (2014). The folklore of the freeway: Race and revolt in the modernist city. U of Minnesota Press.

Brittain, J.E. (2005). Electrical Engineering Hall of Fame: Nikola Tesla. Proceedings of the IEEE, vol. 93, no.5, pp.1057-1059, May 2005, doi: 10.1109/JPROC.2005.846330.

Castel-Branco, N. (2020). Beyond Stevin and Galileo: Seventeenth Century Hydrostatics in the Jesuit Class of the Sphere. Trends in the History of Science. doi:: 10.1007/978-3-030-34061-2_16

Chandler, T. (1960). Duplicate Inventions? American Anthropologist, 62(3), 495–498. http://www.jstor.org/stable/667307

Danna, R. (2021). Figuring Out, Nuncius, 36(1), 5-48. doi: 10.1163/18253911-bja10004

de Santillana, G. (1955). The Crime of Galileo. Time Inc.

Devlin, K. (2011). The Man of Numbers: Fibonacci's Arithmetic Revolution. United Kingdom: Bloomsbury Publishing.The Man of Numbers: Fibonacci's Arithmetic Revolution, pp 13, 49

FCC Record. (2001).

Fehr, S. (1992). Warning: Metric Road Signs Ahead: The Washington Post, 25 Aug 1992, https://wapo.st/3BJlPfI

Finocchiaro, M. A. (2005). Retrying Galileo, 1633-1992. Berkeley: University of California Press.

Fowler, D. H. (1982). A generalisation of the Golden Section. Mathematics Institute, University of Warwick.

Freire, P. (1970). Pedagogy of the Oppressed. Penguin.

Geijsbeek, J. B. (John Bart)., Dafforne, R., Stevin, S., Christoffels, J. Ympyn., Mainardi, M., Pietra, A., Manzoni, D., Pacioli, L. (1914). Ancient double-entry bookkeeping: Lucas Pacioli's treatise (A. D. 1494--the earliest known writer on bookkeeping) reproduced and translated with reproductions, notes and abstracts from Manzoni, Pietra, Mainardi, Ympyn, Stevin and Dafforne. Denver, Col.: J. B. Geijsbeek.

Goetzman, W. (2004). Fibonacci and the Financial Revolution: National Bureau of Economic Research, paper 10352, March 2004. doi: 10.3386/w10352

Goodman, E. (2019). A Tale of Two Networks: The Bell Telephone System and the Meaning of “Information,” 1947–1968. Information and Culture, vol. 54, issue 3 doi:10.7560/IC54302

Greenberg, P., Fischer, G., & Counsel, J. G. (2020). Understanding Evictions in Omaha.

House documents. (1879).

Hull, J. J. & Srihari, S. N. (1986). Use of External Information in ZIP Code Recognition. Department of Computer Science, State University of New York at Buffalo. URL: http://jonathanjhull.com/plain_html_site/pubs/hull_usps86.pdf

Iosa, M., Morone, G., & Paolucci, S. (2018). Phi in physiology, psychology and biomechanics: The golden ratio between myth and science. Biosystems, vol. 165, pp 31-39. doi: 10.1016/j.biosystems.2018.01.001

Lin, J. (1995). Ethnic places, postmodernism, and urban change in Houston. Sociological Quarterly, 36(4), 629-647.

Los Angeles Times (1991). Phone System Changes Kill 2 of Mexico’s Area Codes. URL: latimes.com/archives/la-xpm-1991-01-31-me-23-story.html

Markowsky, G. (1992). Misconceptions about the Golden Ratio: The College Mathematics Journal, vol. 23, issue 1. doi: 10.1080/07468342.1992.11973428

McCartan, C., Kenny, C.T., Simko, T., Garcia, G., Wang, K., Wu, M., Kuriwaki, S., and Imai, K. (2022). Simulated redistricting plans for the analysis and evaluation of redistricting in the United States. doi: 10.48550/arxiv.2206.10763

McNichol, D. (2006). The Roads that Built America: The Incredible Story of the U.S. Interstate System. United States: Sterling Publishing Company, Incorporated.

Meier, H.C.S. (2021). Historic Redlining Scores for 2010 and 2020 US Census Tracts, ver. 2: University of Michigan, Institute for Social Research. OPENICPSR. bit.ly/3IpP8HP

National Highway Program, Federal Aid Highway Act of 1956: Hearings Before the United States House Committee on Public Works, Subcommittee on Roads, Eighty-Fourth Congress, Second Session, on Feb. 7, 8, 21, 29, Mar. 1, 2, 5, 1956. (1956). United States: U.S. Government Printing Office.

Palisca, C. V. (1984). Introductory Notes on the Historiography of the Greek Modes. The Journal of Musicology, 3(3), 221–228. https://doi.org/10.2307/763812

Petrie, J. N. (1963) Compatibility-A Major Requisite in the Telephone Industry, J. Audio Eng. Soc., vol. 11, no. 2, pp. 135-141,

Prestemon JP, Nepal P, Sahoo K (2022) Housing starts and the associated wood products carbon storage by county by Shared Socioeconomic Pathway in the United States. PLoS ONE 17(8): e0270025. https://doi.org/10.1371/journal.pone.0270025

Pritchett, W. (2002). From Tenements to the Taylor Homes: In Search of Urban Housing Policy in Twentieth Century America.

Proffitt, J.D. (1994). Network Connection & Traffic Interchange Agreements-A Wireless Personal Communications Opportunity. In: Rappaport, T.S., Woerner, B.D., Reed, J.H. (eds) Wireless Personal Communications. The Springer International Series in Engineering and Computer Science, vol 262. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2758-9_22

Seda, P., & Brown, K. (2021). Choosing to See: A framework for equity in the math classroom. Dave Burgess Consulting.

Seife, C. (2000). Zero: The biography of a dangerous idea. Penguin.

St. John, E. P. (2013). The Legacy of the GI Bill: Equal Opportunity in U.S. Higher Education after WWII, Fairness in Access to Higher Education in a Global Perspective, pp 57-76

Swain, M. (2012). India's Greatest Mathematician Brahmagupta: Science Horizon, pp 37-40

The Britannica Guide to Theories and Ideas That Changed the Modern World. (2009). United States: Rosen Publishing Group.

The Psychosocial Implications of Disney Movies. (2019). Switzerland: MDPI.

The Three-Fifths Compromise (2020). The Three-Fifths Compromise: Perspectives of Change. President and Fellows of Harvard College. perspectivesofchange.hms.harvard.edu/node/87

Turner, C. (2016). Jamestown 1607-1624: A Chronological History & Genealogical Reference of America's First Successful Colony. United States: CreateSpace Independent Publishing Platform.

Vatican Gives Galileo an Image Makeover (2008). URL: https://cbsn.ws/45eq68m

Wikle, T. A. (2001). America's cellular telephone obsession: New geographies of personal communication. Journal of American & Comparative Cultures, 24(1‐2), 123-128.

Won, J. (2009). Stevin's Decimal Fraction System: An Effort for Unification of Geometry & Arithmetic. Journal for History of Mathematics, vol. 22, issue 1, pp. 41-52, 2009

Woolbright, C.F. (1949). The Federal-Aid Road Policy: 1916-1930 (Master's thesis, Oklahoma Agricultural & Mechanical College). May 6, 1949. URL: https://shareok.org/bitstream/handle/11244/43382/Thesis-1949-W913f.pdf

Descargas

Publicado

2023-07-27

Cómo citar

O. Ratliff, J. (2023). Las matemáticas como herramienta de opresion en los estados unidos. Prometeica - Revista De Filosofía Y Ciencias, (27), 710–719. https://doi.org/10.34024/prometeica.2023.27.15366
Recebió: 2023-07-12
Publicado: 2023-07-27

Artículos similares

También puede {advancedSearchLink} para este artículo.