Regulação negativa de Calbindina-D28k durante o envelhecimento neural animal
DOI:
https://doi.org/10.34024/rnc.2022.v30.13353Palavras-chave:
Calbindina-D28k, Neuroproteção, Proteínas ligantes de cálcio, envelhecimentoResumo
Introdução. A regulação nos níveis de cálcio (Ca2+) em neurônios é fundamental para a sinalização celular, transmissão sináptica e homeostase neuronal. A calbindina-D28k (CB) é uma proteína de ligação ao cálcio composta por seis domínios EF-hands, quatro das quais podem se ligar ao Ca2+ com alta afinidade molecular e regular os seus níveis intracelulares. O estudo é centrado em investigar o padrão de expressão de CB como um fator de neuroproteção durante o envelhecimento animal. Objetivo. Construir uma análise crítica de resultados de diferentes estudos originais com o objetivo de responder à pergunta: os níveis de Calbindina-D28k podem sofrer modificações durante a senescência animal? Além de uma discussão aprofundada sobre a temática atual. Método. A estratégia de busca dos dados utilizados contou com estudos obtidos por meio das bases de dados: Medical Literature Analysis and Retrieval System Online (MEDLINE/PubMed), Science Direct e Web of science. 57 artigos foram analisados. Resultados. As bases de dados apontaram para poucos estudos envolvendo a quantificação da proteína em neurônios humanos e estudos pós-morte, mas com base robusta em experimentos animais e in vitro. Os achados mostram que animais idosos têm expressão reduzida de CB. Os níveis CB relacionam-se com a neuroproteção em modelos animais. Conclusão. Diante dos achados, os dados sugerem que a regulação negativa de CB pode estar relacionada ao envelhecimento. As informações levantadas aqui podem ser utilizadas em estudos futuros sobre a patogênese de doenças que envolvam a neurodegeneração e expressão de proteínas ligantes de cálcio, mais especificamente a Calbindina-D28k.
Downloads
Métricas
Referências
Kelemen K, Szilágyi T. New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System. Brain Sci 2021;11:634. https://doi.org/10.3390/brainsci11050634
Bading H. Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci 2013;14:593-608. https://doi.org/10.1038/nrn3531
Kasai H. Comparative biology of Ca2+-dependent exocytosis: Implications of kinetic diversity for secretory function. Trends Neurosci 1999;22:88-93. https://doi.org/10.1016/S0166-2236(98)01293-4
Blaustein MP. Calcium transport and buffering in neurons. Trends Neurosci 1988;11:438-43. https://doi.org/10.1016/0166-2236(88)90195-6
Bazargani N, Attwell D. Astrocyte calcium signaling: The third wave. Nat Neurosci 2016;19:182-9. https://doi.org/10.1038/nn.4201
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: Function and dysfunction. Cell Mol Life Sci 2014;71:2787-814. https://doi.org/10.1007/s00018-013-1550-7
Buchman AS, Yu L, Wilson RS, Leurgans SE, Nag S, Shulman JM, et al. Progressive parkinsonism in older adults is related to the burden of mixed brain pathologies. Neurology 2019;92:E1821-30. https://doi.org/10.1212/WNL.0000000000007315
Buchman AS, Dawe RJ, Leurgans SE, Curran TA, Truty T, Yu L, et al. Different combinations of mobility metrics derived from a wearable sensor are associated with distinct health outcomes in older adults. J Gerontol Ser A Biol Sci Med Sci 2020;75:1176-83. https://doi.org/10.1093/GERONA/GLZ160
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:517-29. https://doi.org/10.1038/nrm1155
Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2003;2:242-62. https://doi.org/10.1080/14734220310022289
Elíes J, Yáñez M, Pereira TMC, Gil-Longo J, MacDougall DA, Campos-Toimil M. An Update to Calcium Binding Proteins. Adv Exp Med Biol 2020;1131:183-213. https://doi.org/10.1007/978-3-030-12457-1_8
Xu JH, Tang FR. Voltage-dependent calcium channels, calcium binding proteins, and their interaction in the pathological process of epilepsy. Int J Mol Sci 2018;19:2735. https://doi.org/10.3390/ijms19092735
Bagur R, Hajnóczky G. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Mol Cell 2017;66:780-8. https://doi.org/10.1016/j.molcel.2017.05.028
Yáñez M, Gil-Longo J, Campos-Toimil M. Calcium binding proteins. Adv Exp Med Biol 2012;740:461-82. https://doi.org/10.1007/978-94-007-2888-2_19
Berridge MJ. Calcium signalling remodelling and disease. Biochem Soc Trans 2012;40:297-309. https://doi.org/10.1042/BST20110766
Berridge MJ. Module 2: Cell Signalling Pathways. Cell Signal Biol 2014;6:csb0001002. https://doi.org/10.1042/csb0001002
Mattson MP, Arumugam TV. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab 2018;27:1176-99. https://doi.org/10.1016/j.cmet.2018.05.011
Buchman AS, Yu L, Oveisgharan S, Petyuk VA, Tasaki S, Gaiteri C, et al. Cortical proteins may provide motor resilience in older adults. Sci Rep 2021;11:11311. https://doi.org/10.1038/s41598-021-90859-3
Bennett DA. Mixed pathologies and neural reserve: Implications of complexity for Alzheimer disease drug discovery. PLoS Med 2017;14:e1002256. https://doi.org/10.1371/journal.pmed.1002256
Moyer JR, Furtak SC, McGann JP, Brown TH. Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiol Aging 2011;32:1693-706. https://doi.org/10.1016/j.neurobiolaging.2009.10.001
Noble JW, Almalki R, Roe SM, Wagner A, Duman R, Atack JR. The X-ray structure of human calbindin-D28K: an improved model. Acta Crystallogr Sect D Struct Biol 2018;74:1008-14.
https://doi.org/10.1107/S2059798318011610
Tokuno H, Watson C, Roberts A, Sasaki E, Okano H. Marmoset neuroscience. Neurosci Res 2015;93:1-2.
https://doi.org/10.1016/j.neures.2015.03.001
Celio MR. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 1990;35:375-475. https://doi.org/10.1016/0306-4522(90)90091-H
Kim BJ, Lee SY, Kim HW, Park EJ, Kim J, Kim SJ, et al. Optimized immunohistochemical analysis of cerebellar Purkinje cells using a specific biomarker, calbindin D28k. Korean J Physiol Pharmacol 2009;13:373-8. https://doi.org/10.4196/kjpp.2009.13.5.373
Li JT, Xie XM, Yu JY, Sun YX, Liao XM, Wang XX, et al. Suppressed Calbindin Levels in Hippocampal Excitatory Neurons Mediate Stress-Induced Memory Loss. Cell Rep 2017;21:891-900.
https://doi.org/10.1016/j.celrep.2017.10.006
van Brederode JFM, helliesen MK, hendrickson AE. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neuroscience 1991;44:157-71. https://doi.org/10.1016/0306-4522(91)90258-P
Fairless R, Williams SK, Diem R. Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease. Int J Mol Sci 2019;20:2146. https://doi.org/10.3390/ijms20092146
Miller RJ. The control of neuronal Ca2+ homeostasis. Prog Neurobiol 1991;37:255–85. https://doi.org/10.1016/0301-0082(91)90028-Y
Magistretti PJ, Allaman I. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. Neuron 2015;86:883-901. https://doi.org/10.1016/j.neuron.2015.03.035.
Mattson MP, Rychlik B, Chu C, Christakost S. Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-1328k in cultured hippocampal neurons. Neuron 1991;6:41–51. https://doi.org/10.1016/0896-6273(91)90120-O
Klapstein GJ, Vietla S, Lieberman DN, Gray PA, Airaksinen MS, Thoenen H, et al. Calbindin-D(28k) falls to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: Evidence from calbindin-D(28k) knockout mice. Neuroscience 1998;85:361-73. https://doi.org/10.1016/S0306-4522(97)00632-5
Molinari S, Battini R, Ferrari S, Pozzi L, Killcross AS, Robbins TW, et al. Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. Proc Natl Acad Sci USA 1996;93:8028-33. https://doi.org/10.1073/pnas.93.15.8028
D’Orlando C, Celio MR, Schwaller B. Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res 2002;945:181-90. https://doi.org/10.1016/S0006-8993(02)02753-1
D’Orlando C, Fellay B, Schwaller B, Salicio V, Bloc A, Gotzos V, et al. Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 2001;909:145-58. https://doi.org/10.1016/S0006-8993(01)02671-3
Phillips RG, Meier TJ, Giuli LC, McLaughlin JR, Ho DY, Sapolsky RM. Calbindin D(28K) gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. J Neurochem 1999;73:1200-5. https://doi.org/10.1046/j.1471-4159.1999.0731200.x
Meier TJ, Ho DY, Park TS, Sapolsky RM. Gene transfer of calbindin D(28k) cDNA via herpes simplex virus amplicon vector decreases cytoplasmic calcium ion response and enhances neuronal survival following glutamatergic challenge but not following cyanide. J Neurochem 1998;71:1013-23. https://doi.org/10.1046/j.1471-4159.1998.71031013.x
Clapham DE. Calcium signaling. Cell 1995;80:259–68. https://doi.org/10.1016/0092-8674(95)90408-5
Chanthaphavong RS, Murphy SM, Anderson CR. Chemical coding of sympathetic neurons controlling the tarsal muscle of the rat. Auton Neurosci Basic Clin 2003;105:77–89. https://doi.org/10.1016/S1566-0702(03)00045-6
Kalaria RN, Mukaetova-Ladinska EB. Delirium, dementia and senility. Brain 2012;135:2582–4. https://doi.org/10.1093/brain/aws235
Yuan H-H, Chen R-J, Zhu Y-H, Peng C-L, Zhu X-R. The Neuroprotective Effect of Overexpression of Calbindin-D28k in an Animal Model of Parkinson’s Disease. Mol Neurobiol 2013;47:117–22. https://doi.org/10.1007/s12035-012-8332-3
Bobay BG, Stewart AL, Tucker AT, Thompson RJ, Varney KM, Cavanagh J. Structural insights into the calcium-dependent interaction between calbindin-D28K and caspase-3. FEBS Lett 2012;586:3582-9. https://doi.org/10.1016/j.febslet.2012.08.032
Wu C-K, Thal L, Pizzo D, Hansen L, Masliah E, Geula C. Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer’s disease. Exp Neurol 2005;195:484–96. https://doi.org/10.1016/j.expneurol.2005.06.020
Sun S, Li F, Gao X, Zhu Y, Chen J, Zhu X, et al. Calbindin-D28K inhibits apoptosis in dopaminergic neurons by activation of the PI3-kinase-Akt signaling pathway. Neuroscience 2011;199:359–67. https://doi.org/10.1016/j.neuroscience.2011.09.054
Yenari MA, Minami M, Sun GH, Meier TJ, Kunis DM, McLaughlin JR, et al. Calbindin D28K Overexpression Protects Striatal Neurons From Transient Focal Cerebral Ischemia. Stroke 2001;32:1028–35. https://doi.org/10.1161/01.STR.32.4.1028
Kook S-Y, Jeong H, Kang MJ, Park R, Shin HJ, Han S-H, et al. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer’s disease mouse model. Cell Death Differ 2014;21:1575–87. https://doi.org/10.1038/cdd.2014.67
Westerink RHS, Beekwilder JP, Wadman WJ. Differential alterations of synaptic plasticity in dentate gyrus and CA1 hippocampal area of Calbindin-D28K knockout mice. Brain Res 2012;1450:1–10. https://doi.org/10.1016/j.brainres.2012.02.036
Kriegsfeld LJ, Mei DF, Yan L, Witkovsky P, LeSauter J, Hamada T, et al. Targeted mutation of the calbindin D 28K gene disrupts circadian rhythmicity and entrainment. Eur J Neurosci 2008;27:2907–21. https://doi.org/10.1111/j.1460-9568.2008.06239.x
Montpied P, Winsky L, Dailey JW, Jobe PC, Jacobowitz DM. Alteration in Levels of Expression of Brain Calbindin D-28k and Calretinin mRNA in Genetically Epilepsy-Prone Rats. Epilepsia 1995;36:911–21. https://doi.org/10.1111/J.1528-1157.1995.TB01635.X
Yuan H-H, Chen R-J, Zhu Y-H, Peng C-L, Zhu X-R. The Neuroprotective Effect of Overexpression of Calbindin-D28k in an Animal Model of Parkinson’s Disease. Mol Neurobiol 2013;47:117–22. https://doi.org/10.1007/s12035-012-8332-3
Foster TC, Kumar A. Calcium Dysregulation in the Aging Brain. Neuroscientist 2016;8:297–301.
https://doi.org/10.1177/107385840200800404
Molinari S, Battini R, Ferrari S, Pozzi L, Killcross AS, Robbins TW, et al. Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. Proc Natl Acad Sci 1996;93:8028–33. https://doi.org/10.1073/pnas.93.15.8028
Schmidt H. Three functional facets of calbindin D-28k. Front Mol Neurosci 2012;5:25. https://doi.org/10.3389/fnmol.2012.00025
Wu CK, Nagykery N, Hersh LB, Scinto LFM, Geula C. Selective age-related loss of calbindin-D28k from basal forebrain cholinergic neurons in the common marmoset (callithrix jacchus). Neuroscience 2003;120:249–59. https://doi.org/10.1016/S0306-4522(03)00248-3
Iacopino AM, Rhoten WB, Christakos S. Calcium binding protein (calbindin-D28k) gene expression in the developing and aging mouse cerebellum. Mol Brain Res 1990;8:283–90.
https://doi.org/10.1016/0169-328X(90)90041-B
Trump BF, Berezesky IK. Calcium-mediated cell injury and cell death. New Horizons Sci Pract Acute Med 1996;4:139–50. https://doi.org/10.1096/fasebj.9.2.7781924
Utzschneider DA, Rand MN, Waxman SG, Kocsis JD. Nuclear and cytoplasmic Ca2+ signals in developing rat dorsal root ganglion neurons studied in excised tissue. Brain Res 1994;635:231–7. https://doi.org/10.1016/0006-8993(94)91444-3
Smaili S, Hirata H, Ureshino R, Monteforte PT, Morales AP, Muler ML, et al. Calcium and cell death signaling in neurodegeneration and aging. An Acad Bras Cienc 2009;81:467–75. https://doi.org/10.1590/s0001-37652009000300011
Wu S, Hyrc KL, Moulder KL, Lin Y, Warmke T, Snider BJ. Cellular calcium deficiency plays a role in neuronal death caused by proteasome inhibitors. J Neurochem 2009;109:1225–36. https://doi.org/10.1111/j.1471-4159.2009.06037.x
Snider BJ, Tee LY, Canzoniero LMT, Babcock DJ, Choi DW. NMDA antagonists exacerbate neuronal death caused by proteasome inhibition in cultured cortical and striatal neurons. Eur J Neurosci 2002;15:419–28. https://doi.org/10.1046/j.0953-816x.2001.01867.x
Pfeiffer B, Norman AW, Hamprecht B. Immunocytochemical characterization of neuron-rich rat brain primary cultures: calbindin D28K as marker of a neuronal subpopulation. Brain Res 1989;476:120–8. https://doi.org/10.1016/0006-8993(89)91543-6
Bourne JA, Warner CE, Upton DJ, Rosa MGPC. Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): Laminar distribution of calcium-binding proteins (Calbindin, Parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol 2007;500:832-49. https://doi.org/10.1002/cne.21190
Kim HG, Gu YN, Lee KP, Lee JG, Kim CW, Lee JW, et al. Immunocytochemical localization of the calcium-binding proteins calbindin D28k, calretinin and parvalbumin in bat visual cortex. Histol Histopathol 2016;31:317–27. https://doi.org/10.14670/HH-11-680
Lee JY, Choi JS, Ye EA, Kim HH, Jeon CJ. Organization of calbindin D28K-immunoreactive neurons in the dog superior colliculus. Zoolog Sci 2007;24:1103–14. https://doi.org/10.2108/zsj.24.1103
Kishimoto J, Tsuchiya T, Cox H, Emson P., Nakayama Y. Age-related Changes of Calbindin-D28k, Calretinin, and Parvalbumin mRNAs in the Hamster Brain. Neurobiol Aging 1998;19:77–82. https://doi.org/10.1016/S0197-4580(97)00166-8
Kishimoto J, Tsuchiya T, Cox H, Emson PC, Nakayama Y. Age-related changes of calbindin-D28k, calretinin, and parvalbumin mRNAs in the hamster brain. Neurobiol Aging 1998;19:77–82. https://doi.org/10.1016/S0197-4580(97)00166-8
Vishnyakova PA, Moiseev KY, Spirichev AA, Emanuilov AI, Nozdrachev AD, Masliukov PM. Expression of calbindin and calretinin in the dorsomedial and ventromedial hypothalamic nuclei during aging. Anat Rec 2021;304:1094–104. https://doi.org/10.1002/ar.24536
Ouda L, Burianova J, Syka J. Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat. Exp Gerontol 2012;47:497–506. https://doi.org/10.1016/J.EXGER.2012.04.003
Iacopino AM, Christakos S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci 1990;87:4078–82. https://doi.org/10.1073/PNAS.87.11.4078
Ahn JH, Hong S, Park JH, Kim IH, Cho JH, Lee TK, et al. Immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the somatosensory cortex of rodents during normal aging. Mol Med Rep 2017;16:7191–8. https://doi.org/10.3892/mmr.2017.7573
Cho YJ, Lee JC, Kang BG, An J, Song HS, Son O, et al. Immunohistochemical study on the expression of calcium binding proteins (calbindin-D28k, calretinin, and parvalbumin) in the cerebral cortex and in the hippocampal region of nNOS knock-out(-/-) mice. Anat Cell Biol 2011;44:106. https://doi.org/10.5115/acb.2011.44.2.106
Bu J, Sathyendra V, Nagykery N, Geula C. Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp Neurol 2003;182:220–31. https://doi.org/10.1016/S0014-4886(03)00094-3
Riascos D, Nicholas A, Samaeekia R, Yukhananov R, Mesulam MM, Bigio EH, et al. Alterations of Ca2+-responsive proteins within cholinergic neurons in aging and Alzheimer’s disease. Neurobiol Aging 2014;35:1325–33. https://doi.org/10.1016/j.neurobiolaging.2013.12.017
Riascos D, de Leon D, Baker-Nigh A, Nicholas A, Yukhananov R, Bu J, et al. Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer’s disease. Acta Neuropathol 2011;122:565–76. https://doi.org/10.1007/s00401-011-0865-4
Tessier CR, Broadie K. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol Dis 2011;41:147–59. https://doi.org/10.1016/j.nbd.2010.09.002
Hardy J, Selkoe DJ. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science (80- ) 2002;297:353–6. https://doi.org/10.1126/SCIENCE.1072994
Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial Abnormalities in Alzheimer’s Disease. J Neurosci 2001;21:3017–23. https://doi.org/10.1523/JNEUROSCI.21-09-03017.2001
Figueredo-Cardenas G, Harris CL, Anderson KD, Reiner A. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Exp Neurol 1998;149:356–72. https://doi.org/10.1006/exnr.1997.6724
Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005;57:252–60. https://doi.org/10.1016/j.biopsych.2004.10.019
Sakai T, Oshima A, Nozaki Y, Ida I, Haga C, Akiyama H, et al. Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 2008;28:143–50. https://doi.org/10.1111/j.1440-1789.2007.00867.x
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Jean Carlos Souza Silva, Antônio William do Nascimento Fernandes, Maria Jussara Medeiros Nunes, Paulo Leonardo Araújo de Góis Morais, Ivana Alice Teixeira Fonseca, Rovena Clara Galvão Januário Engelberth, José Rodolfo Lopes de Paiva Cavalcanti, Dayane Pessoa de Araújo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aceito: 2022-08-04
Publicado: 2022-08-23