Regulação negativa de Calbindina-D28k durante o envelhecimento neural animal

Autores

DOI:

https://doi.org/10.34024/rnc.2022.v30.13353

Palavras-chave:

Calbindina-D28k, Neuroproteção, Proteínas ligantes de cálcio, envelhecimento

Resumo

Introdução. A regulação nos níveis de cálcio (Ca2+) em neurônios é fundamental para a sinalização celular, transmissão sináptica e homeostase neuronal. A calbindina-D28k (CB) é uma proteína de ligação ao cálcio composta por seis domínios EF-hands, quatro das quais podem se ligar ao Ca2+ com alta afinidade molecular e regular os seus níveis intracelulares.  O estudo é centrado em investigar o padrão de expressão de CB como um fator de neuroproteção durante o envelhecimento animal. Objetivo. Construir uma análise crítica de resultados de diferentes estudos originais com o objetivo de responder à pergunta: os níveis de Calbindina-D28k podem sofrer modificações durante a senescência animal? Além de uma discussão aprofundada sobre a temática atual. Método. A estratégia de busca dos dados utilizados contou com estudos obtidos por meio das bases de dados: Medical Literature Analysis and Retrieval System Online (MEDLINE/PubMed), Science Direct e Web of science. 57 artigos foram analisados. Resultados. As bases de dados apontaram para poucos estudos envolvendo a quantificação da proteína em neurônios humanos e estudos pós-morte, mas com base robusta em experimentos animais e in vitro. Os achados mostram que animais idosos têm expressão reduzida de CB. Os níveis CB relacionam-se com a neuroproteção em modelos animais. Conclusão. Diante dos achados, os dados sugerem que a regulação negativa de CB pode estar relacionada ao envelhecimento. As informações levantadas aqui podem ser utilizadas em estudos futuros sobre a patogênese de doenças que envolvam a neurodegeneração e expressão de proteínas ligantes de cálcio, mais especificamente a Calbindina-D28k.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Kelemen K, Szilágyi T. New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System. Brain Sci 2021;11:634. https://doi.org/10.3390/brainsci11050634

Bading H. Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci 2013;14:593-608. https://doi.org/10.1038/nrn3531

Kasai H. Comparative biology of Ca2+-dependent exocytosis: Implications of kinetic diversity for secretory function. Trends Neurosci 1999;22:88-93. https://doi.org/10.1016/S0166-2236(98)01293-4

Blaustein MP. Calcium transport and buffering in neurons. Trends Neurosci 1988;11:438-43. https://doi.org/10.1016/0166-2236(88)90195-6

Bazargani N, Attwell D. Astrocyte calcium signaling: The third wave. Nat Neurosci 2016;19:182-9. https://doi.org/10.1038/nn.4201

Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: Function and dysfunction. Cell Mol Life Sci 2014;71:2787-814. https://doi.org/10.1007/s00018-013-1550-7

Buchman AS, Yu L, Wilson RS, Leurgans SE, Nag S, Shulman JM, et al. Progressive parkinsonism in older adults is related to the burden of mixed brain pathologies. Neurology 2019;92:E1821-30. https://doi.org/10.1212/WNL.0000000000007315

Buchman AS, Dawe RJ, Leurgans SE, Curran TA, Truty T, Yu L, et al. Different combinations of mobility metrics derived from a wearable sensor are associated with distinct health outcomes in older adults. J Gerontol Ser A Biol Sci Med Sci 2020;75:1176-83. https://doi.org/10.1093/GERONA/GLZ160

Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:517-29. https://doi.org/10.1038/nrm1155

Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2003;2:242-62. https://doi.org/10.1080/14734220310022289

Elíes J, Yáñez M, Pereira TMC, Gil-Longo J, MacDougall DA, Campos-Toimil M. An Update to Calcium Binding Proteins. Adv Exp Med Biol 2020;1131:183-213. https://doi.org/10.1007/978-3-030-12457-1_8

Xu JH, Tang FR. Voltage-dependent calcium channels, calcium binding proteins, and their interaction in the pathological process of epilepsy. Int J Mol Sci 2018;19:2735. https://doi.org/10.3390/ijms19092735

Bagur R, Hajnóczky G. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Mol Cell 2017;66:780-8. https://doi.org/10.1016/j.molcel.2017.05.028

Yáñez M, Gil-Longo J, Campos-Toimil M. Calcium binding proteins. Adv Exp Med Biol 2012;740:461-82. https://doi.org/10.1007/978-94-007-2888-2_19

Berridge MJ. Calcium signalling remodelling and disease. Biochem Soc Trans 2012;40:297-309. https://doi.org/10.1042/BST20110766

Berridge MJ. Module 2: Cell Signalling Pathways. Cell Signal Biol 2014;6:csb0001002. https://doi.org/10.1042/csb0001002

Mattson MP, Arumugam TV. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab 2018;27:1176-99. https://doi.org/10.1016/j.cmet.2018.05.011

Buchman AS, Yu L, Oveisgharan S, Petyuk VA, Tasaki S, Gaiteri C, et al. Cortical proteins may provide motor resilience in older adults. Sci Rep 2021;11:11311. https://doi.org/10.1038/s41598-021-90859-3

Bennett DA. Mixed pathologies and neural reserve: Implications of complexity for Alzheimer disease drug discovery. PLoS Med 2017;14:e1002256. https://doi.org/10.1371/journal.pmed.1002256

Moyer JR, Furtak SC, McGann JP, Brown TH. Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiol Aging 2011;32:1693-706. https://doi.org/10.1016/j.neurobiolaging.2009.10.001

Noble JW, Almalki R, Roe SM, Wagner A, Duman R, Atack JR. The X-ray structure of human calbindin-D28K: an improved model. Acta Crystallogr Sect D Struct Biol 2018;74:1008-14.

https://doi.org/10.1107/S2059798318011610

Tokuno H, Watson C, Roberts A, Sasaki E, Okano H. Marmoset neuroscience. Neurosci Res 2015;93:1-2.

https://doi.org/10.1016/j.neures.2015.03.001

Celio MR. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 1990;35:375-475. https://doi.org/10.1016/0306-4522(90)90091-H

Kim BJ, Lee SY, Kim HW, Park EJ, Kim J, Kim SJ, et al. Optimized immunohistochemical analysis of cerebellar Purkinje cells using a specific biomarker, calbindin D28k. Korean J Physiol Pharmacol 2009;13:373-8. https://doi.org/10.4196/kjpp.2009.13.5.373

Li JT, Xie XM, Yu JY, Sun YX, Liao XM, Wang XX, et al. Suppressed Calbindin Levels in Hippocampal Excitatory Neurons Mediate Stress-Induced Memory Loss. Cell Rep 2017;21:891-900.

https://doi.org/10.1016/j.celrep.2017.10.006

van Brederode JFM, helliesen MK, hendrickson AE. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neuroscience 1991;44:157-71. https://doi.org/10.1016/0306-4522(91)90258-P

Fairless R, Williams SK, Diem R. Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease. Int J Mol Sci 2019;20:2146. https://doi.org/10.3390/ijms20092146

Miller RJ. The control of neuronal Ca2+ homeostasis. Prog Neurobiol 1991;37:255–85. https://doi.org/10.1016/0301-0082(91)90028-Y

Magistretti PJ, Allaman I. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. Neuron 2015;86:883-901. https://doi.org/10.1016/j.neuron.2015.03.035.

Mattson MP, Rychlik B, Chu C, Christakost S. Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-1328k in cultured hippocampal neurons. Neuron 1991;6:41–51. https://doi.org/10.1016/0896-6273(91)90120-O

Klapstein GJ, Vietla S, Lieberman DN, Gray PA, Airaksinen MS, Thoenen H, et al. Calbindin-D(28k) falls to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: Evidence from calbindin-D(28k) knockout mice. Neuroscience 1998;85:361-73. https://doi.org/10.1016/S0306-4522(97)00632-5

Molinari S, Battini R, Ferrari S, Pozzi L, Killcross AS, Robbins TW, et al. Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. Proc Natl Acad Sci USA 1996;93:8028-33. https://doi.org/10.1073/pnas.93.15.8028

D’Orlando C, Celio MR, Schwaller B. Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res 2002;945:181-90. https://doi.org/10.1016/S0006-8993(02)02753-1

D’Orlando C, Fellay B, Schwaller B, Salicio V, Bloc A, Gotzos V, et al. Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 2001;909:145-58. https://doi.org/10.1016/S0006-8993(01)02671-3

Phillips RG, Meier TJ, Giuli LC, McLaughlin JR, Ho DY, Sapolsky RM. Calbindin D(28K) gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. J Neurochem 1999;73:1200-5. https://doi.org/10.1046/j.1471-4159.1999.0731200.x

Meier TJ, Ho DY, Park TS, Sapolsky RM. Gene transfer of calbindin D(28k) cDNA via herpes simplex virus amplicon vector decreases cytoplasmic calcium ion response and enhances neuronal survival following glutamatergic challenge but not following cyanide. J Neurochem 1998;71:1013-23. https://doi.org/10.1046/j.1471-4159.1998.71031013.x

Clapham DE. Calcium signaling. Cell 1995;80:259–68. https://doi.org/10.1016/0092-8674(95)90408-5

Chanthaphavong RS, Murphy SM, Anderson CR. Chemical coding of sympathetic neurons controlling the tarsal muscle of the rat. Auton Neurosci Basic Clin 2003;105:77–89. https://doi.org/10.1016/S1566-0702(03)00045-6

Kalaria RN, Mukaetova-Ladinska EB. Delirium, dementia and senility. Brain 2012;135:2582–4. https://doi.org/10.1093/brain/aws235

Yuan H-H, Chen R-J, Zhu Y-H, Peng C-L, Zhu X-R. The Neuroprotective Effect of Overexpression of Calbindin-D28k in an Animal Model of Parkinson’s Disease. Mol Neurobiol 2013;47:117–22. https://doi.org/10.1007/s12035-012-8332-3

Bobay BG, Stewart AL, Tucker AT, Thompson RJ, Varney KM, Cavanagh J. Structural insights into the calcium-dependent interaction between calbindin-D28K and caspase-3. FEBS Lett 2012;586:3582-9. https://doi.org/10.1016/j.febslet.2012.08.032

Wu C-K, Thal L, Pizzo D, Hansen L, Masliah E, Geula C. Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer’s disease. Exp Neurol 2005;195:484–96. https://doi.org/10.1016/j.expneurol.2005.06.020

Sun S, Li F, Gao X, Zhu Y, Chen J, Zhu X, et al. Calbindin-D28K inhibits apoptosis in dopaminergic neurons by activation of the PI3-kinase-Akt signaling pathway. Neuroscience 2011;199:359–67. https://doi.org/10.1016/j.neuroscience.2011.09.054

Yenari MA, Minami M, Sun GH, Meier TJ, Kunis DM, McLaughlin JR, et al. Calbindin D28K Overexpression Protects Striatal Neurons From Transient Focal Cerebral Ischemia. Stroke 2001;32:1028–35. https://doi.org/10.1161/01.STR.32.4.1028

Kook S-Y, Jeong H, Kang MJ, Park R, Shin HJ, Han S-H, et al. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer’s disease mouse model. Cell Death Differ 2014;21:1575–87. https://doi.org/10.1038/cdd.2014.67

Westerink RHS, Beekwilder JP, Wadman WJ. Differential alterations of synaptic plasticity in dentate gyrus and CA1 hippocampal area of Calbindin-D28K knockout mice. Brain Res 2012;1450:1–10. https://doi.org/10.1016/j.brainres.2012.02.036

Kriegsfeld LJ, Mei DF, Yan L, Witkovsky P, LeSauter J, Hamada T, et al. Targeted mutation of the calbindin D 28K gene disrupts circadian rhythmicity and entrainment. Eur J Neurosci 2008;27:2907–21. https://doi.org/10.1111/j.1460-9568.2008.06239.x

Montpied P, Winsky L, Dailey JW, Jobe PC, Jacobowitz DM. Alteration in Levels of Expression of Brain Calbindin D-28k and Calretinin mRNA in Genetically Epilepsy-Prone Rats. Epilepsia 1995;36:911–21. https://doi.org/10.1111/J.1528-1157.1995.TB01635.X

Yuan H-H, Chen R-J, Zhu Y-H, Peng C-L, Zhu X-R. The Neuroprotective Effect of Overexpression of Calbindin-D28k in an Animal Model of Parkinson’s Disease. Mol Neurobiol 2013;47:117–22. https://doi.org/10.1007/s12035-012-8332-3

Foster TC, Kumar A. Calcium Dysregulation in the Aging Brain. Neuroscientist 2016;8:297–301.

https://doi.org/10.1177/107385840200800404

Molinari S, Battini R, Ferrari S, Pozzi L, Killcross AS, Robbins TW, et al. Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. Proc Natl Acad Sci 1996;93:8028–33. https://doi.org/10.1073/pnas.93.15.8028

Schmidt H. Three functional facets of calbindin D-28k. Front Mol Neurosci 2012;5:25. https://doi.org/10.3389/fnmol.2012.00025

Wu CK, Nagykery N, Hersh LB, Scinto LFM, Geula C. Selective age-related loss of calbindin-D28k from basal forebrain cholinergic neurons in the common marmoset (callithrix jacchus). Neuroscience 2003;120:249–59. https://doi.org/10.1016/S0306-4522(03)00248-3

Iacopino AM, Rhoten WB, Christakos S. Calcium binding protein (calbindin-D28k) gene expression in the developing and aging mouse cerebellum. Mol Brain Res 1990;8:283–90.

https://doi.org/10.1016/0169-328X(90)90041-B

Trump BF, Berezesky IK. Calcium-mediated cell injury and cell death. New Horizons Sci Pract Acute Med 1996;4:139–50. https://doi.org/10.1096/fasebj.9.2.7781924

Utzschneider DA, Rand MN, Waxman SG, Kocsis JD. Nuclear and cytoplasmic Ca2+ signals in developing rat dorsal root ganglion neurons studied in excised tissue. Brain Res 1994;635:231–7. https://doi.org/10.1016/0006-8993(94)91444-3

Smaili S, Hirata H, Ureshino R, Monteforte PT, Morales AP, Muler ML, et al. Calcium and cell death signaling in neurodegeneration and aging. An Acad Bras Cienc 2009;81:467–75. https://doi.org/10.1590/s0001-37652009000300011

Wu S, Hyrc KL, Moulder KL, Lin Y, Warmke T, Snider BJ. Cellular calcium deficiency plays a role in neuronal death caused by proteasome inhibitors. J Neurochem 2009;109:1225–36. https://doi.org/10.1111/j.1471-4159.2009.06037.x

Snider BJ, Tee LY, Canzoniero LMT, Babcock DJ, Choi DW. NMDA antagonists exacerbate neuronal death caused by proteasome inhibition in cultured cortical and striatal neurons. Eur J Neurosci 2002;15:419–28. https://doi.org/10.1046/j.0953-816x.2001.01867.x

Pfeiffer B, Norman AW, Hamprecht B. Immunocytochemical characterization of neuron-rich rat brain primary cultures: calbindin D28K as marker of a neuronal subpopulation. Brain Res 1989;476:120–8. https://doi.org/10.1016/0006-8993(89)91543-6

Bourne JA, Warner CE, Upton DJ, Rosa MGPC. Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): Laminar distribution of calcium-binding proteins (Calbindin, Parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol 2007;500:832-49. https://doi.org/10.1002/cne.21190

Kim HG, Gu YN, Lee KP, Lee JG, Kim CW, Lee JW, et al. Immunocytochemical localization of the calcium-binding proteins calbindin D28k, calretinin and parvalbumin in bat visual cortex. Histol Histopathol 2016;31:317–27. https://doi.org/10.14670/HH-11-680

Lee JY, Choi JS, Ye EA, Kim HH, Jeon CJ. Organization of calbindin D28K-immunoreactive neurons in the dog superior colliculus. Zoolog Sci 2007;24:1103–14. https://doi.org/10.2108/zsj.24.1103

Kishimoto J, Tsuchiya T, Cox H, Emson P., Nakayama Y. Age-related Changes of Calbindin-D28k, Calretinin, and Parvalbumin mRNAs in the Hamster Brain. Neurobiol Aging 1998;19:77–82. https://doi.org/10.1016/S0197-4580(97)00166-8

Kishimoto J, Tsuchiya T, Cox H, Emson PC, Nakayama Y. Age-related changes of calbindin-D28k, calretinin, and parvalbumin mRNAs in the hamster brain. Neurobiol Aging 1998;19:77–82. https://doi.org/10.1016/S0197-4580(97)00166-8

Vishnyakova PA, Moiseev KY, Spirichev AA, Emanuilov AI, Nozdrachev AD, Masliukov PM. Expression of calbindin and calretinin in the dorsomedial and ventromedial hypothalamic nuclei during aging. Anat Rec 2021;304:1094–104. https://doi.org/10.1002/ar.24536

Ouda L, Burianova J, Syka J. Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat. Exp Gerontol 2012;47:497–506. https://doi.org/10.1016/J.EXGER.2012.04.003

Iacopino AM, Christakos S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci 1990;87:4078–82. https://doi.org/10.1073/PNAS.87.11.4078

Ahn JH, Hong S, Park JH, Kim IH, Cho JH, Lee TK, et al. Immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the somatosensory cortex of rodents during normal aging. Mol Med Rep 2017;16:7191–8. https://doi.org/10.3892/mmr.2017.7573

Cho YJ, Lee JC, Kang BG, An J, Song HS, Son O, et al. Immunohistochemical study on the expression of calcium binding proteins (calbindin-D28k, calretinin, and parvalbumin) in the cerebral cortex and in the hippocampal region of nNOS knock-out(-/-) mice. Anat Cell Biol 2011;44:106. https://doi.org/10.5115/acb.2011.44.2.106

Bu J, Sathyendra V, Nagykery N, Geula C. Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp Neurol 2003;182:220–31. https://doi.org/10.1016/S0014-4886(03)00094-3

Riascos D, Nicholas A, Samaeekia R, Yukhananov R, Mesulam MM, Bigio EH, et al. Alterations of Ca2+-responsive proteins within cholinergic neurons in aging and Alzheimer’s disease. Neurobiol Aging 2014;35:1325–33. https://doi.org/10.1016/j.neurobiolaging.2013.12.017

Riascos D, de Leon D, Baker-Nigh A, Nicholas A, Yukhananov R, Bu J, et al. Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer’s disease. Acta Neuropathol 2011;122:565–76. https://doi.org/10.1007/s00401-011-0865-4

Tessier CR, Broadie K. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol Dis 2011;41:147–59. https://doi.org/10.1016/j.nbd.2010.09.002

Hardy J, Selkoe DJ. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science (80- ) 2002;297:353–6. https://doi.org/10.1126/SCIENCE.1072994

Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial Abnormalities in Alzheimer’s Disease. J Neurosci 2001;21:3017–23. https://doi.org/10.1523/JNEUROSCI.21-09-03017.2001

Figueredo-Cardenas G, Harris CL, Anderson KD, Reiner A. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Exp Neurol 1998;149:356–72. https://doi.org/10.1006/exnr.1997.6724

Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005;57:252–60. https://doi.org/10.1016/j.biopsych.2004.10.019

Sakai T, Oshima A, Nozaki Y, Ida I, Haga C, Akiyama H, et al. Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 2008;28:143–50. https://doi.org/10.1111/j.1440-1789.2007.00867.x

Downloads

Publicado

2022-08-23

Como Citar

Silva, J. C. S., Fernandes, A. W. do N., Nunes, M. J. M., Morais, P. L. A. de G., Fonseca, I. A. T., Engelberth, R. C. G. J., Lopes de Paiva Cavalcanti, J. R., & Pessoa de Araújo, D. (2022). Regulação negativa de Calbindina-D28k durante o envelhecimento neural animal. Revista Neurociências, 30, 1–36. https://doi.org/10.34024/rnc.2022.v30.13353

Edição

Seção

Artigos de Revisão
Recebido: 2022-01-11
Aceito: 2022-08-04
Publicado: 2022-08-23

Artigos mais lidos pelo mesmo(s) autor(es)