Níveis aumentados do fator neurotrófico derivado do cérebro em culturas de células nervosas tratadas com um inibidor seletivo da recaptação de serotonina
DOI:
https://doi.org/10.34024/rnc.2023.v31.14868Palavras-chave:
Fator Neurotrófico Derivado do Encéfalo, Fluoxetina, Células da Retina, Técnicas de Cultura de Células, Western Blotting, Agentes AntidepressivosResumo
Introdução. Os efeitos de antidepressivos como a fluoxetina na plasticidade cerebral estão associados ao aumento da transcrição e sinalização de fatores tróficos como o fator neurotrófico derivado do cérebro (BDNF), o que aumenta os processos sinápticos e neurogênicos. Objetivo. Avaliar se o tratamento com fluoxetina poderia aumentar os níveis de BDNF em células da retina. Método. Para conduzir o experimento, as retinas foram dissecadas de ratos neonatos e mantidas em meio de cultura. Em seguida, as culturas designadas para o grupo experimental foram tratadas com 1µM de fluoxetina e mantidas por 2, 12, 24, 48 ou 72 horas in vitro. As culturas designadas para o grupo controle foram submetidas ao mesmo protocolo, porém não receberam o tratamento com fluoxetina. Os níveis de BDNF foram determinados por análise de Western blot e os dados foram analisados pelo teste t de Student para comparar os dois grupos (controle e experimental). Resultados. Os resultados mostraram que as culturas tratadas com fluoxetina por 12, 24 e 48 horas tiveram níveis significantemente mais elevados de BDNF do que o grupo controle. Conclusão. Os achados sugerem que o tratamento com fluoxetina pode ter efeitos terapêuticos potenciais em células da retina, aumentando os níveis de BDNF. Isso acrescenta à evidência existente sobre o papel do BDNF na mediação dos efeitos terapêuticos de antidepressivos e aponta o potencial para pesquisas adicionais sobre o uso de antidepressivos no tratamento de doenças retinianas.
Downloads
Métricas
Referências
Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Neurotrophic factors: Springer; 2012; p.1-12. https://doi.org/10.1007/978-1-61779-536-7_1
Yan X, Liu J, Zhang Z, Li W, Sun S, Zhao J, et al. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 2017;32:169-80. https://doi.org/10.1007/s10103-016-2099-0
Yang J, Siao C-J, Nagappan G, Marinic T, Jing D, McGrath K, et al. Neuronal release of proBDNF. Nature Neurosci 2009;12:113. https://doi.org/10.1038/nn.2244
Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 2018;38:579-93. https://doi.org/10.1007/s10571-017-0510-4
Woo NH, Teng HK, Siao C-J, Chiaruttini C, Pang PT, Milner TA, et al. Activation of p75 NTR by proBDNF facilitates hippocampal long-term depression. Nature Neurosci 2005;8:1069. https://doi.org/10.1038/nn1510
Greene LA, Kaplan DR. Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol 1995;5:579-87. https://doi.org/10.1016/0959-4388(95)80062-X
Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature Rev Drug Discovery 2011;10:209. https://doi.org/10.1038/nrd3366
Ikegame T, Bundo M, Murata Y, Kasai K, Kato T, Iwamoto K. DNA methylation of the BDNF gene and its relevance to psychiatric disorders. J Hum Gen 2013;58:434. https://doi.org/10.1038/jhg.2013.65
Nishimura K, Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, et al. Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochem Biophys Res Comm 2007;356:200-6. https://doi.org/10.1016/j.bbrc.2007.02.135
Björkholm C, Monteggia LM. BDNF–a key transducer of antidepressant effects. Neuropharmacology 2016;102:72-9. https://doi.org/10.1016/j.neuropharm.2015.10.034
Molteni R, Calabrese F, Bedogni F, Tongiorgi E, Fumagalli F, Racagni G, et al. Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Inter J Neuropsychopharmacol 2006;9:307-17. https://doi.org/10.1017/S1461145705005766
Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biolog Psychiatr 2000;48:830-43. https://doi.org/10.1016/S0006-3223(00)01036-2
Masson J. Serotonin in retina. Biochimie 2019;161:51-5. https://doi.org/10.1016/S0006-3223(00)01036-2
Braekevelt CR, Hollenberg MJ. The development of the retina of the albino rat. Am J Anat 1970;127:281-301. https://doi.org/10.1002/aja.1001270305
Witkovsky P. Dopamine and retinal function. Doc ophthalmol 2004;108:17-39. https://doi.org/10.1023/B:DOOP.0000019487.88486.0a
Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 2005;25:6251-9. https://doi.org/10.1523/JNEUROSCI.4601-04.2005
Galter D, Unsicker K. Sequential activation of the 5-HT1A serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Mol Cell Neurosci 2000;15:446-55. https://doi.org/10.1006/mcne.2000.0841
Schreiber R, Newman-Tancredi A. Improving cognition in schizophrenia with antipsychotics that elicit neurogenesis through 5-HT1A receptor activation. Neurobiol Learning Mem 2014;110:72-80. https://doi.org/10.1016/j.nlm.2013.12.015
Lipton SA. Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc Nat Acad Sci 1986;83:9774-8. https://doi.org/10.1073/pnas.83.24.977
Galli-Resta L, Ensini M, Fusco E, Gravina A, Margheritti B. Afferent spontaneous electrical activity promotes the survival of target cells in the developing retinotectal system of the rat. J Neurosci 1993;13:243-50. https://doi.org/10.1523/JNEUROSCI.13-01-00243.1993
Zetterström TS, Coppell AA, Khundakar AA. The role of 5‐hydroxytryptamine receptor subtypes in the regulation of brain‐derived neurotrophic factor gene expression. J Pharm Pharmacol 2014;66:53-61. https://doi.org/10.1111/jphp.12153
De Foubert G, Carney S, Robinson C, Destexhe E, Tomlinson R, Hicks C, et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 2004;128:597-604. https://doi.org/10.1016/j.neuroscience.2004.06.054
Garcia‐Valenzulela E, Gorczyca W, Darzynkiewicz Z, Sharma S. Apoptosis in adult retinal ganglion cells after axotomy. J Neurobiol 1994;25:431-8. https://doi.org/10.1002/neu.480250408
Nakazawa T, Tamai M, Mori N. Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Investig Ophthalmol Vis Sci 2002;43:3319-26. https://pubmed.ncbi.nlm.nih.gov/12356841/
Duman CH, Duman RS. Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci Lett 2015;601:20-9. https://doi.org/10.1016/j.neulet.2015.01.022
Pilar‐Cuéllar F, Vidal R, Pazos A. Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain‐derived neurotrophic factor, β‐catenin and antidepressant‐like effects. Brit J Pharmacol 2012;165:1046-57. https://doi.org/10.1111/j.1476-5381.2011.01516.x
Hajszan T, MacLusky NJ, Leranth C. Short‐term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 2005;21:1299-303. https://doi.org/10.1111/j.1460-9568.2005.03968.x
Ma M, Ren Q, Yang C, Zhang J-c, Yao W, Dong C, et al. Adjunctive treatment of brexpiprazole with fluoxetine shows a rapid antidepressant effect in social defeat stress model: role of BDNF-TrkB signaling. Scientif Rep 2016;6:39209. https://doi.org/10.1038/srep39209
Kim ST, Chung YY, Hwang H-I, Shin H-K, Choi R, Jun YH. Differential Expression of BDNF and BIM in Streptozotocin-induced Diabetic Rat Retina After Fluoxetine Injection. In Vivo 2021;35:1461-6. https://doi.org/10.21873/invivo.12398
Vetencourt JFM, Sale A, Viegi A, Baroncelli L, De Pasquale R, O'Leary OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008;320:385-8. https://doi.org/10.1126/science.1150516
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Hotair Phellipe Martins Fernandes, Sara Domingues Soares e Silva, Adriano Junio Moreira de Souza

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aceito: 2023-05-17
Publicado: 2023-06-28