Níveis aumentados do fator neurotrófico derivado do cérebro em culturas de células nervosas tratadas com um inibidor seletivo da recaptação de serotonina

Autores

  • Hotair Phellipe Martins Fernandes UNITPAC
  • Sara Domingues Soares e Silva
  • Adriano Junio Moreira de Souza UFF

DOI:

https://doi.org/10.34024/rnc.2023.v31.14868

Palavras-chave:

Fator Neurotrófico Derivado do Encéfalo, Fluoxetina, Células da Retina, Técnicas de Cultura de Células, Western Blotting, Agentes Antidepressivos

Resumo

Introdução. Os efeitos de antidepressivos como a fluoxetina na plasticidade cerebral estão associados ao aumento da transcrição e sinalização de fatores tróficos como o fator neurotrófico derivado do cérebro (BDNF), o que aumenta os processos sinápticos e neurogênicos. Objetivo. Avaliar se o tratamento com fluoxetina poderia aumentar os níveis de BDNF em células da retina. Método. Para conduzir o experimento, as retinas foram dissecadas de ratos neonatos e mantidas em meio de cultura. Em seguida, as culturas designadas para o grupo experimental foram tratadas com 1µM de fluoxetina e mantidas por 2, 12, 24, 48 ou 72 horas in vitro. As culturas designadas para o grupo controle foram submetidas ao mesmo protocolo, porém não receberam o tratamento com fluoxetina. Os níveis de BDNF foram determinados por análise de Western blot e os dados foram analisados pelo teste t de Student para comparar os dois grupos (controle e experimental). Resultados. Os resultados mostraram que as culturas tratadas com fluoxetina por 12, 24 e 48 horas tiveram níveis significantemente mais elevados de BDNF do que o grupo controle. Conclusão. Os achados sugerem que o tratamento com fluoxetina pode ter efeitos terapêuticos potenciais em células da retina, aumentando os níveis de BDNF. Isso acrescenta à evidência existente sobre o papel do BDNF na mediação dos efeitos terapêuticos de antidepressivos e aponta o potencial para pesquisas adicionais sobre o uso de antidepressivos no tratamento de doenças retinianas.

Métricas

Carregando Métricas ...

Downloads

Não há dados estatísticos.

Referências

Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Neurotrophic factors: Springer; 2012; p.1-12. https://doi.org/10.1007/978-1-61779-536-7_1

Yan X, Liu J, Zhang Z, Li W, Sun S, Zhao J, et al. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 2017;32:169-80. https://doi.org/10.1007/s10103-016-2099-0

Yang J, Siao C-J, Nagappan G, Marinic T, Jing D, McGrath K, et al. Neuronal release of proBDNF. Nature Neurosci 2009;12:113. https://doi.org/10.1038/nn.2244

Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 2018;38:579-93. https://doi.org/10.1007/s10571-017-0510-4

Woo NH, Teng HK, Siao C-J, Chiaruttini C, Pang PT, Milner TA, et al. Activation of p75 NTR by proBDNF facilitates hippocampal long-term depression. Nature Neurosci 2005;8:1069. https://doi.org/10.1038/nn1510

Greene LA, Kaplan DR. Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol 1995;5:579-87. https://doi.org/10.1016/0959-4388(95)80062-X

Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature Rev Drug Discovery 2011;10:209. https://doi.org/10.1038/nrd3366

Ikegame T, Bundo M, Murata Y, Kasai K, Kato T, Iwamoto K. DNA methylation of the BDNF gene and its relevance to psychiatric disorders. J Hum Gen 2013;58:434. https://doi.org/10.1038/jhg.2013.65

Nishimura K, Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, et al. Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochem Biophys Res Comm 2007;356:200-6. https://doi.org/10.1016/j.bbrc.2007.02.135

Björkholm C, Monteggia LM. BDNF–a key transducer of antidepressant effects. Neuropharmacology 2016;102:72-9. https://doi.org/10.1016/j.neuropharm.2015.10.034

Molteni R, Calabrese F, Bedogni F, Tongiorgi E, Fumagalli F, Racagni G, et al. Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Inter J Neuropsychopharmacol 2006;9:307-17. https://doi.org/10.1017/S1461145705005766

Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biolog Psychiatr 2000;48:830-43. https://doi.org/10.1016/S0006-3223(00)01036-2

Masson J. Serotonin in retina. Biochimie 2019;161:51-5. https://doi.org/10.1016/S0006-3223(00)01036-2

Braekevelt CR, Hollenberg MJ. The development of the retina of the albino rat. Am J Anat 1970;127:281-301. https://doi.org/10.1002/aja.1001270305

Witkovsky P. Dopamine and retinal function. Doc ophthalmol 2004;108:17-39. https://doi.org/10.1023/B:DOOP.0000019487.88486.0a

Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 2005;25:6251-9. https://doi.org/10.1523/JNEUROSCI.4601-04.2005

Galter D, Unsicker K. Sequential activation of the 5-HT1A serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Mol Cell Neurosci 2000;15:446-55. https://doi.org/10.1006/mcne.2000.0841

Schreiber R, Newman-Tancredi A. Improving cognition in schizophrenia with antipsychotics that elicit neurogenesis through 5-HT1A receptor activation. Neurobiol Learning Mem 2014;110:72-80. https://doi.org/10.1016/j.nlm.2013.12.015

Lipton SA. Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc Nat Acad Sci 1986;83:9774-8. https://doi.org/10.1073/pnas.83.24.977

Galli-Resta L, Ensini M, Fusco E, Gravina A, Margheritti B. Afferent spontaneous electrical activity promotes the survival of target cells in the developing retinotectal system of the rat. J Neurosci 1993;13:243-50. https://doi.org/10.1523/JNEUROSCI.13-01-00243.1993

Zetterström TS, Coppell AA, Khundakar AA. The role of 5‐hydroxytryptamine receptor subtypes in the regulation of brain‐derived neurotrophic factor gene expression. J Pharm Pharmacol 2014;66:53-61. https://doi.org/10.1111/jphp.12153

De Foubert G, Carney S, Robinson C, Destexhe E, Tomlinson R, Hicks C, et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 2004;128:597-604. https://doi.org/10.1016/j.neuroscience.2004.06.054

Garcia‐Valenzulela E, Gorczyca W, Darzynkiewicz Z, Sharma S. Apoptosis in adult retinal ganglion cells after axotomy. J Neurobiol 1994;25:431-8. https://doi.org/10.1002/neu.480250408

Nakazawa T, Tamai M, Mori N. Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Investig Ophthalmol Vis Sci 2002;43:3319-26. https://pubmed.ncbi.nlm.nih.gov/12356841/

Duman CH, Duman RS. Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci Lett 2015;601:20-9. https://doi.org/10.1016/j.neulet.2015.01.022

Pilar‐Cuéllar F, Vidal R, Pazos A. Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain‐derived neurotrophic factor, β‐catenin and antidepressant‐like effects. Brit J Pharmacol 2012;165:1046-57. https://doi.org/10.1111/j.1476-5381.2011.01516.x

Hajszan T, MacLusky NJ, Leranth C. Short‐term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 2005;21:1299-303. https://doi.org/10.1111/j.1460-9568.2005.03968.x

Ma M, Ren Q, Yang C, Zhang J-c, Yao W, Dong C, et al. Adjunctive treatment of brexpiprazole with fluoxetine shows a rapid antidepressant effect in social defeat stress model: role of BDNF-TrkB signaling. Scientif Rep 2016;6:39209. https://doi.org/10.1038/srep39209

Kim ST, Chung YY, Hwang H-I, Shin H-K, Choi R, Jun YH. Differential Expression of BDNF and BIM in Streptozotocin-induced Diabetic Rat Retina After Fluoxetine Injection. In Vivo 2021;35:1461-6. https://doi.org/10.21873/invivo.12398

Vetencourt JFM, Sale A, Viegi A, Baroncelli L, De Pasquale R, O'Leary OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008;320:385-8. https://doi.org/10.1126/science.1150516

Downloads

Publicado

2023-06-28

Como Citar

Martins Fernandes, H. P. ., Domingues Soares e Silva, S., & Moreira de Souza, A. J. (2023). Níveis aumentados do fator neurotrófico derivado do cérebro em culturas de células nervosas tratadas com um inibidor seletivo da recaptação de serotonina. Revista Neurociências, 31, 1–17. https://doi.org/10.34024/rnc.2023.v31.14868

Edição

Seção

Artigos Originais
Recebido: 2023-02-26
Aceito: 2023-05-17
Publicado: 2023-06-28

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)