O uso clínico da robótica social no tratamento de crianças com Transtorno do Espetro Autista

Autores

DOI:

https://doi.org/10.34024/rnc.2023.v31.14697

Palavras-chave:

Interação humano-robô, TEA, Autismo, Terapia assistida por robôs, Robótica social

Resumo

Introdução. O Transtorno do Espectro Autista (TEA) é caracterizado por déficits no domínio da comunicação social com padrões restritivos e repetitivos de comportamento e interesses. Melhorias na intensidade inicial desses déficits foram descritas em intervenções precoces voltadas para estimular o desenvolvimento de diferentes habilidades embotadas no TEA. Contudo, muitos sujeitos com TEA apresentam níveis variados de aversão a interações sociais com humanos, o que dificulta as intervenções. Nesse contexto, os robôs sociais surgem como uma proposta promissora, considerando que esses sujeitos não apresentam aversão a interação com robôs. O uso de robôs socais vem sendo descrito por trazer amplos benefícios para o desenvolvimento de diversas habilidades em crianças com TEA. Objetivo. Analisar as implicações do uso da robótica social em intervenções terapêuticas precoces no tratamento de crianças com TEA. Método. Os dados foram obtidos por meio de levantamento bibliográfico realizado na base de dados Google Acadêmico. Como critério de inclusão, fez-se seleção de artigos publicados no idioma inglês, incluindo original articles, clinical trial e review sem limite de datas. Os descritores em inglês utilizados foram: "Autism spectrum disorders, Human-robot interaction, Robot-assisted therapy". Conclusão: De acordo com os dados analisados, o uso de robôs socais, em muitos casos, pode trazer amplos benefícios para o desenvolvimento de diversas habilidades em crianças com TEA; incluído imitação, atenção conjunta, reconhecimento de emoções, interações triádicas e interações auto-iniciadas. Habilidades estas que são descritas como reduzidas em crianças com TEA.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

American Psychiatric Association. DSM-5: Manual diagnóstico e estatístico de transtornos mentais. Porto Alegre: Artmed Editora, 2014. https://books.google.com.br/books?hl=pt-BR&lr=&id=QL4rDAAAQBAJ&oi=fnd&pg=PT13&dq=dsm+5&ots=nR4CtDzaGR&sig=u4iPLtGV4JK4GERPdQJs7GJZres#v=onepage&q=dsm%205&f=false

Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci 2004;24:9228-31. https://doi.org/10.1523/JNEUROSCI.3340-04.2004

Carter AS, Davis NO, Klin A, Volkmar FR. Social Development in Autism. In: Volkmar FR, Paul R, Klin A, Cohen D (Eds.). Handbook of autism and pervasive developmental disorders: Diagnosis, development, neurobiology, and behavior. New Jersey: John Wiley & Sons, Inc.; 2005; pp.312-34. https://psycnet.apa.org/record/2005-05077-011

Kätsyri J, Saalasti S, Tiippana K, von Wendt L, Sams M. Impaired recognition of facial emotions from low-spatial frequencies in Asperger syndrome. Neuropsychologia 2008;46:1888-97. https://doi.org/10.1016/j.neuropsychologia.2008.01.005

Griffiths S, Jarrold C, Penton-Voak IS, Woods AT, Skinner AL, Munafò MR. Impaired recognition of basic emotions from facial expressions in young people with autism spectrum disorder: Assessing the importance of expression intensity. J Autism Develop Dis 2019;49:2768-78. https://doi.org/10.1007/s10803-017-3091-7

Yeung MK, Lee TL, Chan AS. Impaired recognition of negative facial expressions is partly related to facial perception deficits in adolescents with high-functioning autism spectrum disorder. J Autism Develop Dis 2020;50:1596-606. https://doi.org/10.1007/s10803-019-03915-3

Song Y, Hakoda Y. Selective impairment of basic emotion recognition in people with autism: Discrimination thresholds for recognition of facial expressions of varying intensities. J Autism Develop Dis 2018;48:1886-94. https://doi.org/10.1007/s10803-017-3428-2

Sato W, Uono S, Toichi M. Atypical recognition of dynamic changes in facial expressions in autism spectrum disorders. Res Autism Spec Dis 2013;7:906-12. https://doi.org/10.1016/j.rasd.2013.04.008

Uono S, Sato W, Toichi M. Dynamic fearful gaze does not enhance attention orienting in individuals with Asperger’s disorder. Brain Cog 2009;71:229-33. https://doi.org/10.1016/j.bandc.2009.08.015

Paquet A, Olliac B, Golse B, Vaivre-Douret L. Nature of motor impairments in autism spectrum disorder: A comparison with developmental coordination disorder. J Clin Exp Neuropsychol 2019;41:1-14. https://doi.org/10.1080/13803395.2018.1483486

Mercati O, Huguet G, Danckaert A, André-Leroux G, Maruani A, Bellinzoni M, et al. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Mol Psychiatr 2017;22:625-33. https://doi.org/10.1038/mp.2016.61

Roley SS, Mailloux Z, Parham LD, Schaaf RC, Lane CJ, Cermak S. Sensory integration and praxis patterns in children with autism. Am J Occup Ther 2015;69:6901220010p1-8. https://doi.org/10.5014/ajot.2015.012476

Karim AEA, Mohammed AH. Effectiveness of sensory integration program in motor skills in children with autism. Egyp J Med Hum Gen 2015;16:375-80. https://doi.org/10.1016/j.ejmhg.2014.12.008

Mostofsky SH, Dubey P, Jerath VK, Jansiewicz EM, Goldberg MC, Denckla MB. Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. J Inter Neuropsychol Soc 2006;12:314-26. https://doi.org/10.1017/s1355617706060437

Dziuk M, Larson JG, Apostu A, Mahone EM, Denckla MB, Mostofsky SH. Dyspraxia in autism: association with motor, social, and communicative deficits. Develop Med Child Neurol 2007;49:734-9. https://doi.org/10.1111/j.1469-8749.2007.00734.x

Biscaldi M, Rauh R, Irion L, Jung NH, Mall V, Fleischhaker C, et al. Deficits in motor abilities and developmental fractionation of imitation performance in high-functioning autism spectrum disorders. Eur Child Adol Psychiatr 2014;23:599-610. https://doi.org/10.1007/s00787-013-0475-x

Nebel MB, Eloyan A, Nettles CA, Sweeney KL, Ament K, Ward RE, et al. Intrinsic visual-motor synchrony correlates with social deficits in autism. Bio Psychiatr 2016;79:633-41. https://doi.org/10.1016/j.biopsych.2015.08.029

Williams JH, Whiten A, Singh T. A systematic review of action imitation in autistic spectrum disorder. J Autism Develop Dis 2004;34:285-99. https://doi.org/10.1023/b:jadd.0000029551.56735.3a

Rizzolatti G, Fabbri-Destro M. Mirror neurons: from discovery to autism. Exp Brain Res 2010;200:223-37. https://doi.org/10.1007/s00221-009-2002-3

Williams JH, Whiten A, Suddendorf T, Perrett DI. Imitation, mirror neurons and autism. Neurosci Biobehav Rev 2001;25:287-95. https://doi.org/10.1016/s0149-7634(01)00014-8

Rizzolatti G, Fabbri-Destro M, Cattaneo L. Mirror neurons and their clinical relevance. Nature Clin Pract Neurol 2009;5:24-34. https://doi.org/10.1038/ncpneuro0990

Perkins T, Stokes M, McGillivray J, Bittar R. Mirror neuron dysfunction in autism spectrum disorders. J Clin Neurosci 2010;17:1239-43. https://doi.org/10.1016/j.jocn.2010.01.026

Prinsen J, Alaerts K. Broken or socially-mistuned mirror neurons in autism? An investigation via transcranial magnetic stimulation. Autism Res 2022;15:1056-67. https://doi.org/10.1002/aur.2720

Iacoboni M. Neural mechanisms of imitation. Curr Opin Neurobiol 2005;15:632-7. https://doi.org/10.1016/j.conb.2005.10.010

Heyes C, Catmur C. What happened to mirror neurons? Persp Psychol Sci 2022;17:153-68. https://doi.org/10.1177/1745691621990638

Gadad BS, Hewitson L, Young KA, German DC. Neuropathology and animal models of autism: genetic and environmental factors. Autism Res Treat 2013;2013:731935. https://doi.org/10.1155/2013/731935

Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: A systematic review update. Autism Res 2022;15:778-90. https://doi.org/10.1002/aur.2696

Billard A, Robins B, Nadel J, Dautenhahn K. Building Robota, a mini-humanoid robot for the rehabilitation of children with autism. Assist Technol 2007;19:37-49. https://doi.org/10.1080/10400435.2007.10131864

Ricks DJ, Colton MB (eds). Trends and considerations in robot-assisted autism therapy. 2010 IEEE international conference on robotics and automation; 2010: IEEE. https://doi.org/10.1109/ROBOT.2010.5509327

Tapus A, Peca A, Aly A, Pop C, Jisa L, Pintea S, et al. Children with autism social engagement in interaction with Nao, an imitative robot: A series of single case experiments. Interac Stud 2012;13:315-47. https://doi.org/10.1075/IS.13.3.01TAP

Greczek J, Kaszubski E, Atrash A, Matarić M (eds). Graded cueing feedback in robot-mediated imitation practice for children with autism spectrum disorders. The 23rd IEEE international symposium on robot and human interactive communication; 2014: IEEE. https://doi.org/10.1109/ROMAN.2014.6926312

Poon KK, Watson LR, Baranek GT, Poe MD. To what extent do joint attention, imitation, and object play behaviors in infancy predict later communication and intellectual functioning in ASD? J Autism Develop Dis 2012;42:1064-74. https://doi.org/10.1007/s10803-011-1349-z

Duffy BR, Rooney C, O'Hare GM, O'Donoghue R (eds). What is a social robot? 10th Irish Conference on Artificial Intelligence & Cognitive Science, University College Cork, Ireland, 1999. https://researchrepository.ucd.ie/bitstream/10197/4412/1/P138-Duffy,Rooney,O'Hare,O'Donoghue-99.pdf

Lee J, Obinata G (eds). Developing therapeutic robot for children with autism: A study on exploring colour feedback. 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI); 2013: IEEE. https://doi.org/10.1109/HRI.2013.6483557

Wainer J, Robins B, Amirabdollahian F, Dautenhahn K. Using the humanoid robot KASPAR to autonomously play triadic games and facilitate collaborative play among children with autism. IEEE Transact Autonom Mental Develop 2014;6:183-99. https://doi.org/10.1109/TAMD.2014.2303116

Scassellati B, Matarić M, Admoni H. Robots for use in autism research. Ann Rev Biomed Engin 2012;14:275-94. https://doi.org/10.1146/annurev-bioeng-071811-150036

Dawson G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Develop Psychopathol 2008;20:775-803. https://doi.org/10.1017/S0954579408000370

Dawson G, Zanolli K. Early intervention and brain plasticity in autism. Autism: Neural bases and treatment possibilities. Novartis Found Symp 2003;251:266-80. https://pubmed.ncbi.nlm.nih.gov/14521198/

Camarata S. Early identification and early intervention in autism spectrum disorders: Accurate and effective? Inter J Speech Lang Pathol 2014;16:1-10. https://doi.org/10.3109/17549507.2013.858773

Oono IP, Honey EJ, McConachie H. Parent‐mediated early intervention for young children with autism spectrum disorders (ASD). Evidence‐Based Child Health Cochr Rev J 2013;8:2380-479. https://doi.org/10.1002/14651858.CD009774.pub2

Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, et al. Autism and social robotics: A systematic review. Autism Res 2016;9:165-83. https://doi.org/10.1002/aur.1527

Duquette A, Michaud F, Mercier H. Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Autonom Robots 2008;24:147-57. https://doi.org/10.1007/s10514-007-9056-5

Vanderborght B, Simut R, Saldien J, Pop C, Rusu AS, Pintea S, et al. Using the social robot probo as a social story telling agent for children with ASD. Interac Stud 2012;13:348-72. https://doi.org/10.1075/is.13.3.02van

Kozima H, Nakagawa C, Yasuda Y. Children–robot interaction: a pilot study in autism therapy. Progr Brain Res 2007;164:385-400. https://doi.org/10.1016/S0079-6123(07)64021-7

Kaur M, Gifford T, Marsh KL, Bhat A. Effect of robot–child interactions on bilateral coordination skills of typically developing children and a child with autism spectrum disorder: A preliminary study. J Motor Learning Develop 2013;1:31-7. https://doi.org/10.1123/jmld.1.2.31

Hinerman P. Teaching autistic children to communicate. Rockville: Aspen Systems Corp; 1983. twuniversal.twu.edu

O'Neill M, Jones RS. Sensory-perceptual abnormalities in autism: a case for more research? J Autism Develop Dis 1997;27:283-93. https://doi.org/10.1023/a:1025850431170

Davidson D, Hilvert E, Misiunaite I, Kerby K, Giordano M. Recognition of facial emotions on human and canine faces in children with and without autism spectrum disorders. Motiv Emotion 2019;43:191-202. https://doi.org/10.1007/s11031-018-9736-9

Mori M, MacDorman KF, Kageki N. The uncanny valley [from the field]. IEEE Robot Autom Magaz 2012;19:98-100. https://doi.org/10.1109/MRA.2012.2192811

Feng S, Wang X, Wang Q, Fang J, Wu Y, Yi L, et al. The uncanny valley effect in typically developing children and its absence in children with autism spectrum disorders. PLoS One 2018;13:e0206343. https://doi.org/10.1371/journal.pone.0206343

Werry I, Dautenhahn K, Ogden B, Harwin W (eds). Can social interaction skills be taught by a social agent? The role of a robotic mediator in autism therapy. International conference on cognitive technology; 2001: Springer. https://doi.org/10.1007/3-540-44617-6_6

Dautenhahn K, Werry I, Salter T, Boekhorst R (eds). Towards adaptive autonomous robots in autism therapy: Varieties of interactions. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation Computational Intelligence in Robotics and Automation for the New Millennium (Cat No 03EX694); 2003: IEEE. https://doi.org/10.1109/CIRA.2003.1222245

Robins B, Dautenhahn K, Boekhorst RT, Billard A. Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Univ Access Info Soc 2005;4:105-20. https://doi.org/10.1007/s10209-005-0116-3

Taheri A, Meghdari A, Alemi M, Pouretemad H. Human–robot interaction in autism treatment: a case study on three pairs of autistic children as twins, siblings, and classmates. Inter J Soc Robot 2018;10:93-113. https://doi.org/10.1007/s12369-017-0433-8

Wood LJ, Zaraki A, Robins B, Dautenhahn K. Developing kaspar: a humanoid robot for children with autism. Inter J Soc Robot 2021;13:491-508. https://doi.org/10.1007/s12369-019-00563-6

Blow M, Dautenhahn K, Appleby A, Nehaniv CL, Lee D (eds). The art of designing robot faces: Dimensions for human-robot interaction. Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction; 2006. https://doi.org/10.1145/1121241.1121301

Ueyama Y. A bayesian model of the uncanny valley effect for explaining the effects of therapeutic robots in autism spectrum disorder. PloS One 2015;10:e0138642. https://doi.org/10.1371/journal.pone.0138642

Pioggia G, Sica M, Ferro M, Igliozzi R, Muratori F, Ahluwalia A, et al. (eds). Human-robot interaction in autism: FACE, an android-based social therapy. RO-MAN 2007-the 16th IEEE international symposium on robot and human interactive communication; 2007: IEEE. https://doi.org/10.1109/ROMAN.2007.4415156

Abraham E, Feldman R. The neurobiology of human allomaternal care; implications for fathering, coparenting, and children's social development. Physiol Behav 2018;193:25-34. https://doi.org/10.1016/j.physbeh.2017.12.034

Organization WH. The importance of caregiver-child interactions for the survival and healthy development of young children: A review. 2004. https://www.who.int/publications-detail-redirect/924159134X

Organization WH. Care for child development: improving the care of young children. 2012. https://www.who.int/publications-detail-redirect/9789241548403

Ozonoff S, Rogers S, Hendren R. Autism Spectrum Disorders: A research review for practioners. Washigton DC: American Psychiatric Publishing; 2003; p.418. https://www.amazon.com/Autism-Spectrum-Disorders-Research-Practitioners/dp/1585621196

Corsello CM. Early intervention in autism. Inf Young Children 2005;18:74-85. https://journals.lww.com/iycjournal/fulltext/2005/04000/early_intervention_in_autism.2.aspx

Koegel LK, Koegel RL, Ashbaugh K, Bradshaw J. The importance of early identification and intervention for children with or at risk for autism spectrum disorders. Inter J Speech Lang Pathol 2014;16:50-6. https://doi.org/10.3109/17549507.2013.861511

Volkmar FR. The importance of early intervention. J Autism Develp Dis 2014;44:2979-80. https://doi.org/10.1007/s10803-014-2265-9

Franz L, Dawson G. Implementing early intervention for autism spectrum disorder: a global perspective. Ped Med (Hong Kong). 2019;2:44. https://doi.org/10.21037/pm.2019.07.09

Vives-Vilarroig J, Ruiz-Bernardo P, García-Gómez A. Sensory integration and its importance in learning for children with autism spectrum disorder. Cad Bras Ter Ocupac 2022;30:e2988. https://doi.org/10.1590/2526-8910.ctoAR22662988

Lesch K-P, Waider J. Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 2012;76:175-91. https://doi.org/10.1016/j.neuron.2012.09.013

Giovedí S, Corradi A, Fassio A, Benfenati F. Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Ped 2014;2:94. https://doi.org/10.3389/fped.2014.00094

Mottron L, Duret P, Mueller S, Moore RD, Forgeot d’Arc B, Jacquemont S, et al. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism. Mol Autism 2015;6:1-19. https://doi.org/10.1186/s13229-015-0024-1

Zuko A, Kleijer KT, Oguro-Ando A, Kas MJ, van Daalen E, van der Zwaag B, et al. Contactins in the neurobiology of autism. Eur J Pharmacol 2013;719:63-74. https://doi.org/10.1016/j.ejphar.2013.07.016

Oguro-Ando A, Bamford RA, Sital W, Sprengers JJ, Zuko A, Matser JM, et al. Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Translat Psychiatr 2021;11:1-15. https://doi.org/10.1038/s41398-021-01223-y

Ha S, Sohn IJ, Kim N, Sim HJ, Cheon KA. Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan. Exp Neurobiol 2015;24:273-84. https://doi.org/10.5607/en.2015.24.4.273

Roley SS, Julie Bissell M, Clark GF. Providing occupational therapy using sensory integration theory and methods in school-based practice. Am J Occup Ther 2009;63:823. https://doi.org/10.5014/ajot.63.6.823

Gevers W, Kadosh RC, Gebuis T. Chap 18. Sensory integration theory: An alternative to the approximate number system. Continuous issues in numerical cognition. Elsevier; 2016. p.405-18. https://doi.org/10.1016/B978-0-12-801637-4.00018-4

Ardila JCC, Salazar YA (eds). Aplicación robótica para realizar terapias en niños con autismo. 12th Latin American and Caribbean Conference for Engineering and Technology; 2014. http://www.laccei.org/LACCEI2014-Guayaquil/RP026.html

Gillesen JC, Barakova E, Huskens BE, Feijs LM (eds). From training to robot behavior: Towards custom scenarios for robotics in training programs for ASD. 2011 IEEE International conference on rehabilitation robotics; 2011: IEEE. https://doi.org/10.1109/ICORR.2011.5975381

Tanaka F, Kimura T (eds). The use of robots in early education: a scenario based on ethical consideration. RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication; 2009: IEEE. http://fumihide-tanaka.org/lab/content/files/research/Tanaka_ROMAN-09.pdf

Charron N, Lewis L, Craig M. A robotic therapy case study: Developing joint attention skills with a student on the autism spectrum. J Edu Technol Sys 2017;46:137-48. https://doi.org/10.1177/004723951668772

Holeva V, Nikopoulou V-A, Papadopoulou M, Vrochidou E, Papakostas GA, Kaburlasos VG (eds). Toward robot-assisted psychosocial intervention for children with autism spectrum disorder (ASD). International Conference on Social Robotics; 2019: Springer. https://doi.org/10.1007/978-3-030-35888-4

Dickstein-Fischer L, Alexander E, Yan X, Su H, Harrington K, Fischer GS (eds). An affordable compact humanoid robot for autism spectrum disorder interventions in children. 2011 Annual international conference of the ieee engineering in medicine and biology society; 2011: IEEE. https://doi.org/10.1109/IEMBS.2011.6091316

Scassellati B. How social robots will help us to diagnose, treat, and understand autism. Robotics research: Springer; 2007; p552-63. https://doi.org/10.1007/978-3-540-48113-3_47

Ranatunga I, Beltran M, Torres NA, Bugnariu N, Patterson RM, Garver C, et al. (eds). Human-robot upper body gesture imitation analysis for autism spectrum disorders. International Conference on Social Robotics; 2013: Springer. https://doi.org/10.1007/978-3-319-02675-6_22

Perry A, Condillac RA, Freeman NL, Dunn-Geier J, Belair J. Multi-site study of the Childhood Autism Rating Scale (CARS) in five clinical groups of young children. J Autism Develop Dis 2005;35:625-34. https://doi.org/10.1007/s10803-005-0006-9

Pereira A, Riesgo RS, Wagner MB. Autismo infantil: tradução e validação da Childhood Autism Rating Scale para uso no Brasil. J Ped 2008;84:487-94. https://doi.org/10.1590/S0021-75572008000700004

Losapio MF, Pondé MP. Translation into Portuguese of the M-CHAT Scale for early screening of autism. Rev Psiquiatr RS 2008;30:221-9. https://doi.org/10.1590/S0101-81082008000400011

Machado AC, Almeida MA. Perfil cognitivo de crianças Pequenas com e sem atraso de desenvolvimento. Rev Psicopedag 2017;34:45-52. https://www.revistapsicopedagogia.com.br/detalhes/516/perfil-cognitivo-de-criancas-pequenas-com-e-sem-atraso-de-desenvolvimento-

Becker MM, Wagner MB, Bosa CA, Schmidt C, Longo D, Papaleo C, et al. Translation and validation of Autism Diagnostic Interview-Revised (ADI-R) for autism diagnosis in Brazil. Arq Neuropsiqu 2012;70:185-90. https://doi.org/10.1590/S0004-282X2012000300006

Berument SK, Rutter M, Lord C, Pickles A, Bailey A. Autism screening questionnaire: diagnostic validity. Bri J Psychiatr 1999;175:444-51. https://doi.org/10.1192/bjp.175.5.444

Scassellati B (ed). Quantitative metrics of social response for autism diagnosis. ROMAN 2005 IEEE International Workshop on Robot and Human Interactive Communication, 2005; 2005: IEEE. https://doi.org/10.1109/ROMAN.2005.1513843

Downloads

Publicado

2023-05-09

Como Citar

Ferreira Lagares, G. ., Lopes Rodrigues, S. P. ., Silva, A. de C., & Moreira de Souza, A. J. (2023). O uso clínico da robótica social no tratamento de crianças com Transtorno do Espetro Autista. Revista Neurociências, 31, 1–27. https://doi.org/10.34024/rnc.2023.v31.14697

Edição

Seção

Artigos de Revisão
Recebido: 2023-01-14
Aceito: 2023-03-15
Publicado: 2023-05-09