Tratamento farmacológico e regeneração do Sistema Nervoso Central em situações traumáticas

Autores

  • Fausto Pierdoná Guzen Graduado em Farmácia, Doutorando em Psicobiologia pela Universidade Federal do Rio Grande do Norte – UFRN, Professor da UERN e da Faculdade de Enfermagem e Medicina Nova Esperança de Mossoró, Mossoró-RN, Brasil
  • Priscila Figueiredo Brito Guzen Graduada em Educação Física, Professora da Faculdade de Enfermagem e Medicina Nova Esperança de Mossoró, Mossoró-RN, Brasil.
  • Magaly Botelho Lemes Graduada em Farmácia, Umuarama-PR, Brasil.
  • Regiane Daniel Laurindo Graduada em Farmácia, Umuarama-PR, Brasil.

DOI:

https://doi.org/10.34024/rnc.2009.v17.8571

Palavras-chave:

Medula Espinal, Trauma, Alopatia, Regeneração

Resumo

Evidências recentes mostram a influência do meio no crescimento de fibras nervosas lesadas no Sistema Nervoso Central (SNC), assim como o potencial do tratamento farmacológico em tornar esse meio mais propício à regeneração de neurônios centrais. Axônios de neurônios do sistema nervoso periférico (SNP) regeneram prontamente no interior de nervos lesados quando os cotos destes são adequadamente posicionados. Esta capacidade se deve a propriedades intrínsecas dos neurônios periféricos, bem como ao meio permissivo para o crescimento das fibras nervosas no interior do nervo lesado. O ambiente de lesão dos axônios do SNC difere muito daquele do SNP. Ao contrário dos nervos, os axônios do SNC não são estruturalmente separados por bainhas perineurais e neurilemais, estruturas que fornecem um substrato anatômico para o crescimento da fibra lesada. Deste modo, a terapia farmacológica é capaz de exercer suas funções no SNC, tanto que, hoje em dia, são permitidas injeções de células após cultivo e administração de fármacos após determinada lesão aguda no SNC.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Jansen L, Itansebout RR. Pathogenesis of spinal cord injury and newer treatments. Spine 1989;14:23-32.

Anderson DK, Hall DE. Pathophysiology of spinal cord trauma. 22ª ed. Michigan: Medical Ann Emerg Med, 1993, p.987-92.

Moore FD. Therapeutic regulation of the complement system in acute injury states. Adv Immunol 1994;56:267-99.

Banati RB, Gehrmann J, Schubert P, Kreutzberg GW. Cytotoxicity of microglia. Glia 1993;7:111-8.

Giulian D. Reactive glia as rivals in regulating neuronal survival. Glia 1993;7:102-10.

Schwartz M, Kipnis J. Model of acute injury to study neuroprotection. Methods Mol Biol 2007;399:41-53.

Gómez-Nicole D, Valle-Argos B, Pita-Thomas DW, Nieto-Sampedro, M. Interleukin 15 expression in the CNS: Blockade of its activity prevents glial activation after an inflammatory injury. Glia 2008;5:494-505.

Condic ML, Lemons ML. Extracellular matrix in spinal cord regeneration: getting beyond attraction and inhibition. Neuroreport 2002;13:A37-48.

Plunet W, Kwon BK, Tetzlaff W. Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J Neurosci Rev 2002;68:1-6.

Snider WD, Zhou FQ, Zhong J, Markus A. Signaling the pathway to regeneration. Neuron 2002;35:13-6.

Bethea JR, Dietrich WD. Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 2002;15:355-60.

Nguyen MD, Julien JP, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 2002;3:216-27.

Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 2008;2:294-301.

Compston A. Brain repair: an overview. J Neurol 1994;241:51-4.

Da-Silva CF. Regeneração do sistema nervoso central. Atual Neurocienc 1995;1:1-16.

Miyata Y, Kashihara Y, Homna S, Kuno M. Effects of nerve growth on the survival and sinaptic function of primary sensory neurons axotomized in newborn rats. J Neurosci 1986;6:2012-18.

Reinoso-Suárez F. Cajal’s concepts on plasticity in the central nervous system revisited. In: Masland RL, Portera-Sánchez A, Toffano G. Neuroplasticity: a new therapeutic tool in the CNS pathology. Padova: Liviana Press, 1987, p.31-7.

Coen SD. Spinal cord injury: preventing secondary injury. AACN Clin Issues Crit Care-Nurs 1992;3:44-54.

Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA. Prevention of apoptotic neuronal death by GM-1 ganglioside-involvement of trk neurotrophin receptors. J Biol Chem 1995;270:3074-80.

Ibañez CF. Neurotrophic factors: from structure function studies to designing effective therapeutics. Trends Biotechnol 1995;13:217-27.

Nockels R, Young W. Pharmacologic strategies in the treatment of experimental spinal cord injury. J Neurotrauma 1992;9:211-7.

Young W. Recovery mechanisms in spinal cord injury: implications for regenerative therapy: In: Seil AJ. Neural regeneration and transplantation. New York: Alan Liss, 1995, p.157-9.

Giszter SF. Spinal cord injury: present and future therapeutic devices and prostheses. Neurotherapeutic 2008; 1:147-62.

Taricco MA, Machado A, Callegaro D, Marino R Jr. Spinal cord tumor in a patient with multiple sclerosis: case report. Arq Neuropsiquiatr 2002;60:475-7.

Vital JM. Traumatic lesions of the spinal cord. Management in the hospital: the orthopedic surgeon’s point of view. Bull Acad Nat Med 2005;189:1119-31.

Vlychou M, Papadaki PJ, Zavras GM, Vasiou K, Kelekis N, Malizos KN, et al. Paraplegia-related alterations of bone density in forearm and hip in Greek patients alter spinal cord injury. Disabil Rehab. 2003;25:324-30.

Cajal SR. Cajal’s degeneration and regeneration of the nervous system. London: Oxford University Press, 1991, 986p.

Da-Silva CF. Biologia celular e molecular da regeneração nervosa do sistema nervoso periférico. Atual Neurociênc 1995;1:1-16.

Fawcett SW, Rokos J, Bakst I. Oligodendrocytes repels axon growth cone collapse. J Cell Sci 1983;92:93-100.

Symons NA, Danielsen, N, Harvey AR. Migration of cells into and out of peripheral nerve isografts in the peripheral and central nervous systems of the adult mouse. Eur J Neurosci 2001;3:522-32.

Lehman RAW, Hayes GJ. Degeneration and regeneration in peripheral nerve. Brain 1967;90:299-312.

Lundborg C. Nerve injury and repair. London, Linvingstone: Churchill, 1988, 149p.

Jessel TM. Cell migration axonal guidance. In: Kandel ER, Schwartz JH, Jessel TM. Principles of the neural science. New York: Elsevier, 1991, p.908-28.

Kuffler DP. Promoting and directing axon outgrowth. Mol Neurol 1994;9:233-43.

Letorneau PC, Condic MC, Snow DM. Interactions of developing neurons with the extracellular matrix. J Neurosci 1994;14:915-28.

Martini R. Expression and functional roles of neural cell surface molecules and extracellular components during development and regeneration of peripheral nerves. J Neurocytol 1994;23:1-28.

Reichard LF, Tomaselli KJ. Extracellular matrix molecules and their receptors: functions in neural development. Annu Rev Neurosci 1991;14:531-70.

Portera-Suárez A. “Cajal’s school pioneer work on CNS regeneration”. In: Masland RL, Portera-Sánchez A, Toffano G. Neuroplasticity: a new therapeutic tool in the CNS pathology. Padova: Liviana Press, 1987, p.9-30.

Dimitrijevic MR. Development of neurophysiological aspects of the spinal cord during past ten years. Paraplegia 1988;30:92-5.

Bjorklund A. A question of making it work. Spinal cord repair. Nature 1994;367:112-3.

Sorensen P. High-dose methylprednisolone in acute spinal injury. Ugersk Laeger 2008;5:315-7.

Hall ED, Younkers PA, Andreus PK, Cox JW, Anderson DK. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 1992;9:425-42.

Leypold BG, Flanders AE, Schwartz ED, Burns AS. The impact of methylprednisolone on lesion severity following spinal cord injury. Spine 2007;3:373-8.

Bavetta S, Hamlyn PJ, Burnstock G, Lieberman AR, Anderson PN. The effects of FK506 on dorsal column axons following spinal cord injury in adult rats: neuroprotection and local regeneration. Exp Neurol 1999;2:382-93.

Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury – a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 1991;324:1829-38.

Sunderland S. Nerve and nerves injuries. London: Churchill-Livingstone, 1978, 1021p.

Walker JB, Harris M. GM-1 ganglioside administration combined with physical therapy restores ambulation in humans with chronic spinal cord injury. Neurosci Lett 1993;161:174-8.

Lahr SP, Stelzner DJ. Anatomical studies of dorsal column axons and dorsal root ganglion cells after spinal cord injury in the newborn rat. J Comp Neurol 1990;3:377-98.

Isackson PJ. Trophic factors response to neuronal stimuli or injury. Curr Opin Neurobiol 1995;5:350-7.

Annunciato NF. Participação dos fatores neurotróficos na regeneração do sistema nervoso. Santafisio 1995; 4:30-8.

Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neuro- toxicity in cortical cell culture. J Neurosci 1987; 7:357-68.

Geisler FH. Neuroprotection and regeneration of the spinal cord. In: Menezes AH, Sonntag VKH. Principles of spinal surgery. New York: McGraw-Hill, 1996, p.769-84.

Murray M. Strategies and mechanisms of recovery after spinal cord injury. Adv Neurol 1997;72:219-25.

Kim J, Schafer, J, Ming GL. New directions in neuroregeneration. Expert Opinion Biol Ther. 2006;8:735-8.

Bracken MB, Collins WF. A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spine-cord injury: results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1990;322: 1405-11.

Young W. Nonregenerative approaches to spinal cord injury. In: Gorio A. Neuroregeneration. Milan: Raven Press, 1993, p.169-84.

Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. Prog Brain Res 2007;161:217-33.

Downloads

Publicado

2009-06-30

Como Citar

Guzen, F. P., Guzen, P. F. B., Lemes, M. B., & Laurindo, R. D. (2009). Tratamento farmacológico e regeneração do Sistema Nervoso Central em situações traumáticas. Revista Neurociências, 17(2), 128–132. https://doi.org/10.34024/rnc.2009.v17.8571

Edição

Seção

Revisão de Literatura
Recebido: 2019-02-08
Publicado: 2009-06-30

Artigos mais lidos pelo mesmo(s) autor(es)