Tratamento farmacológico e regeneração do Sistema Nervoso Central em situações traumáticas

Autores

  • Fausto Pierdoná Guzen Graduado em Farmácia, Doutorando em Psicobiologia pela Universidade Federal do Rio Grande do Norte – UFRN, Professor da UERN e da Faculdade de Enfermagem e Medicina Nova Esperança de Mossoró, Mossoró-RN, Brasil
  • Priscila Figueiredo Brito Guzen Graduada em Educação Física, Professora da Faculdade de Enfermagem e Medicina Nova Esperança de Mossoró, Mossoró-RN, Brasil.
  • Magaly Botelho Lemes Graduada em Farmácia, Umuarama-PR, Brasil.
  • Regiane Daniel Laurindo Graduada em Farmácia, Umuarama-PR, Brasil.

DOI:

https://doi.org/10.34024/rnc.2009.v17.8571

Palavras-chave:

Medula Espinal, Trauma, Alopatia, Regeneração

Resumo

Evidências recentes mostram a influência do meio no crescimento de fibras nervosas lesadas no Sistema Nervoso Central (SNC), assim como o potencial do tratamento farmacológico em tornar esse meio mais propício à regeneração de neurônios centrais. Axônios de neurônios do sistema nervoso periférico (SNP) regeneram prontamente no interior de nervos lesados quando os cotos destes são adequadamente posicionados. Esta capacidade se deve a propriedades intrínsecas dos neurônios periféricos, bem como ao meio permissivo para o crescimento das fibras nervosas no interior do nervo lesado. O ambiente de lesão dos axônios do SNC difere muito daquele do SNP. Ao contrário dos nervos, os axônios do SNC não são estruturalmente separados por bainhas perineurais e neurilemais, estruturas que fornecem um substrato anatômico para o crescimento da fibra lesada. Deste modo, a terapia farmacológica é capaz de exercer suas funções no SNC, tanto que, hoje em dia, são permitidas injeções de células após cultivo e administração de fármacos após determinada lesão aguda no SNC.

Métricas

Carregando Métricas ...

Referências

Jansen L, Itansebout RR. Pathogenesis of spinal cord injury and newer treatments. Spine 1989;14:23-32.

Anderson DK, Hall DE. Pathophysiology of spinal cord trauma. 22ª ed. Michigan: Medical Ann Emerg Med, 1993, p.987-92.

Moore FD. Therapeutic regulation of the complement system in acute injury states. Adv Immunol 1994;56:267-99.

Banati RB, Gehrmann J, Schubert P, Kreutzberg GW. Cytotoxicity of microglia. Glia 1993;7:111-8.

Giulian D. Reactive glia as rivals in regulating neuronal survival. Glia 1993;7:102-10.

Schwartz M, Kipnis J. Model of acute injury to study neuroprotection. Methods Mol Biol 2007;399:41-53.

Gómez-Nicole D, Valle-Argos B, Pita-Thomas DW, Nieto-Sampedro, M. Interleukin 15 expression in the CNS: Blockade of its activity prevents glial activation after an inflammatory injury. Glia 2008;5:494-505.

Condic ML, Lemons ML. Extracellular matrix in spinal cord regeneration: getting beyond attraction and inhibition. Neuroreport 2002;13:A37-48.

Plunet W, Kwon BK, Tetzlaff W. Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J Neurosci Rev 2002;68:1-6.

Snider WD, Zhou FQ, Zhong J, Markus A. Signaling the pathway to regeneration. Neuron 2002;35:13-6.

Bethea JR, Dietrich WD. Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 2002;15:355-60.

Nguyen MD, Julien JP, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 2002;3:216-27.

Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 2008;2:294-301.

Compston A. Brain repair: an overview. J Neurol 1994;241:51-4.

Da-Silva CF. Regeneração do sistema nervoso central. Atual Neurocienc 1995;1:1-16.

Miyata Y, Kashihara Y, Homna S, Kuno M. Effects of nerve growth on the survival and sinaptic function of primary sensory neurons axotomized in newborn rats. J Neurosci 1986;6:2012-18.

Reinoso-Suárez F. Cajal’s concepts on plasticity in the central nervous system revisited. In: Masland RL, Portera-Sánchez A, Toffano G. Neuroplasticity: a new therapeutic tool in the CNS pathology. Padova: Liviana Press, 1987, p.31-7.

Coen SD. Spinal cord injury: preventing secondary injury. AACN Clin Issues Crit Care-Nurs 1992;3:44-54.

Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA. Prevention of apoptotic neuronal death by GM-1 ganglioside-involvement of trk neurotrophin receptors. J Biol Chem 1995;270:3074-80.

Ibañez CF. Neurotrophic factors: from structure function studies to designing effective therapeutics. Trends Biotechnol 1995;13:217-27.

Nockels R, Young W. Pharmacologic strategies in the treatment of experimental spinal cord injury. J Neurotrauma 1992;9:211-7.

Young W. Recovery mechanisms in spinal cord injury: implications for regenerative therapy: In: Seil AJ. Neural regeneration and transplantation. New York: Alan Liss, 1995, p.157-9.

Giszter SF. Spinal cord injury: present and future therapeutic devices and prostheses. Neurotherapeutic 2008; 1:147-62.

Taricco MA, Machado A, Callegaro D, Marino R Jr. Spinal cord tumor in a patient with multiple sclerosis: case report. Arq Neuropsiquiatr 2002;60:475-7.

Vital JM. Traumatic lesions of the spinal cord. Management in the hospital: the orthopedic surgeon’s point of view. Bull Acad Nat Med 2005;189:1119-31.

Vlychou M, Papadaki PJ, Zavras GM, Vasiou K, Kelekis N, Malizos KN, et al. Paraplegia-related alterations of bone density in forearm and hip in Greek patients alter spinal cord injury. Disabil Rehab. 2003;25:324-30.

Cajal SR. Cajal’s degeneration and regeneration of the nervous system. London: Oxford University Press, 1991, 986p.

Da-Silva CF. Biologia celular e molecular da regeneração nervosa do sistema nervoso periférico. Atual Neurociênc 1995;1:1-16.

Fawcett SW, Rokos J, Bakst I. Oligodendrocytes repels axon growth cone collapse. J Cell Sci 1983;92:93-100.

Symons NA, Danielsen, N, Harvey AR. Migration of cells into and out of peripheral nerve isografts in the peripheral and central nervous systems of the adult mouse. Eur J Neurosci 2001;3:522-32.

Lehman RAW, Hayes GJ. Degeneration and regeneration in peripheral nerve. Brain 1967;90:299-312.

Lundborg C. Nerve injury and repair. London, Linvingstone: Churchill, 1988, 149p.

Jessel TM. Cell migration axonal guidance. In: Kandel ER, Schwartz JH, Jessel TM. Principles of the neural science. New York: Elsevier, 1991, p.908-28.

Kuffler DP. Promoting and directing axon outgrowth. Mol Neurol 1994;9:233-43.

Letorneau PC, Condic MC, Snow DM. Interactions of developing neurons with the extracellular matrix. J Neurosci 1994;14:915-28.

Martini R. Expression and functional roles of neural cell surface molecules and extracellular components during development and regeneration of peripheral nerves. J Neurocytol 1994;23:1-28.

Reichard LF, Tomaselli KJ. Extracellular matrix molecules and their receptors: functions in neural development. Annu Rev Neurosci 1991;14:531-70.

Portera-Suárez A. “Cajal’s school pioneer work on CNS regeneration”. In: Masland RL, Portera-Sánchez A, Toffano G. Neuroplasticity: a new therapeutic tool in the CNS pathology. Padova: Liviana Press, 1987, p.9-30.

Dimitrijevic MR. Development of neurophysiological aspects of the spinal cord during past ten years. Paraplegia 1988;30:92-5.

Bjorklund A. A question of making it work. Spinal cord repair. Nature 1994;367:112-3.

Sorensen P. High-dose methylprednisolone in acute spinal injury. Ugersk Laeger 2008;5:315-7.

Hall ED, Younkers PA, Andreus PK, Cox JW, Anderson DK. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 1992;9:425-42.

Leypold BG, Flanders AE, Schwartz ED, Burns AS. The impact of methylprednisolone on lesion severity following spinal cord injury. Spine 2007;3:373-8.

Bavetta S, Hamlyn PJ, Burnstock G, Lieberman AR, Anderson PN. The effects of FK506 on dorsal column axons following spinal cord injury in adult rats: neuroprotection and local regeneration. Exp Neurol 1999;2:382-93.

Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury – a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 1991;324:1829-38.

Sunderland S. Nerve and nerves injuries. London: Churchill-Livingstone, 1978, 1021p.

Walker JB, Harris M. GM-1 ganglioside administration combined with physical therapy restores ambulation in humans with chronic spinal cord injury. Neurosci Lett 1993;161:174-8.

Lahr SP, Stelzner DJ. Anatomical studies of dorsal column axons and dorsal root ganglion cells after spinal cord injury in the newborn rat. J Comp Neurol 1990;3:377-98.

Isackson PJ. Trophic factors response to neuronal stimuli or injury. Curr Opin Neurobiol 1995;5:350-7.

Annunciato NF. Participação dos fatores neurotróficos na regeneração do sistema nervoso. Santafisio 1995; 4:30-8.

Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neuro- toxicity in cortical cell culture. J Neurosci 1987; 7:357-68.

Geisler FH. Neuroprotection and regeneration of the spinal cord. In: Menezes AH, Sonntag VKH. Principles of spinal surgery. New York: McGraw-Hill, 1996, p.769-84.

Murray M. Strategies and mechanisms of recovery after spinal cord injury. Adv Neurol 1997;72:219-25.

Kim J, Schafer, J, Ming GL. New directions in neuroregeneration. Expert Opinion Biol Ther. 2006;8:735-8.

Bracken MB, Collins WF. A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spine-cord injury: results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1990;322: 1405-11.

Young W. Nonregenerative approaches to spinal cord injury. In: Gorio A. Neuroregeneration. Milan: Raven Press, 1993, p.169-84.

Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. Prog Brain Res 2007;161:217-33.

Downloads

Publicado

2009-06-30

Edição

Seção

Revisão de Literatura

Como Citar

1.
Guzen FP, Guzen PFB, Lemes MB, Laurindo RD. Tratamento farmacológico e regeneração do Sistema Nervoso Central em situações traumáticas. Rev Neurocienc [Internet]. 30º de junho de 2009 [citado 11º de julho de 2025];17(2):128-32. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/8571