Progressive resistance exercises as motor therapy for rats with Parkinson's Disease

Authors

DOI:

https://doi.org/10.34024/rnc.2023.v31.15282

Keywords:

Parkinson's, Physical exercise, Estriated Muscle

Abstract

Introduction. Parkinson's disease (PD) is progressive, affecting the Central Nervous System with degeneration of the substantia nigra of the midbrain and decreased dopamine synthesis in the striatum, leading to motor control problems and voluntary movements. Physical activity is a non-pharmacological therapeutic option in PD, but there is still a scarcity of animal studies. Method. This study looked at progressive resistance exercise in Wistar rats, before and after PD induction by electrical stimulation in the substantia nigra of the midbrain for 10 seconds. The rats trained on the vertical ladder for 4 weeks, 5 days/week, up to 45 minutes, maintaining a Maximum Heart Rate between 80-95%. Exercises occurred before and after induction. After the experiment and euthanasia of the animals, the nervous and musculoskeletal tissue of the right front and back legs were collected for histological and histomorphometric analysis, using Nissl, Toluidine, Gomori and Verhoeff Trichrome staining techniques. Results. There was an increase in the area and diameter of the muscle fibers of the flexor hallucis longus muscle (hind leg) in the exercise groups before and before and after PD. However, the exercises did not affect the passive components of collagen and elastic fibers in the muscles evaluated. Conclusion. Progressive resistance exercises have demonstrated benefits for the flexor hallucis longus muscle in the hind leg, but not for the biceps brachii on the front paw in rats with PD. These results provide important insights into the effects of progressive resistance physical activity in the context of PD.   

Metrics

Metrics Loading ...

References

López CLM, Pacheco OB, Vincos GB, Cleves SCC. Enfermedad de Parkinson y covid-19: una pandemia enmedio de otra. Acta Neurol Colomb 2020;36:39-46. https://doi.org/10.22379/24224022292

Conceição LR, Moura LP, Pauli JR. Benefícios do exercício físico nos distúrbios da doença de Parkinson induzidos em modelos animais. Rev Edu Fís 2019;25:E101957. https://doi.org/10.1590/1809-2950/e22016223pt3.Huxley H, Hanson J. Changes in the Cross-Striations of Muscle during Contraction and Stretch and their Structural Interpretation. Nature 1954;173:973-6. https://doi.org/10.1038/173973a0

Pondé PDS, Neto WK, Rodrigues DN, Cristina L, Bastos MF, Sanches EF, et al. Respostas crônicas do treinamento físico e de imagética na doença de Parkinson. Rev Bras Med Esporte 2019;25:503-8. https://doi.org/10.1590/1517-869220192506214238

Hayes MW, Fung VSC, Kimber TE, O’Sullivan JD. Updates and advances in the treatment of Parkinson disease. Med J Aust 2019;211:277-83. https://doi.org/10.5694/mja2.50224

Cheong SL, Federico S, Spalluto G, Klotz KN, Pastorin G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: transition from single-target to multitarget therapy. Drug Discov Today 2019;24:1769-83. https//doi.org/10.1016/j.drudis.2019.05.003

Damiani APL, Caldas LC, Melo AB, Contreiro CDE, Estevam WM, Nogueira BV, et al. Protocolos de treinamento de força promovem aumento da força sem alterações morfológicas. Rev Bras Med Esporte 2020;26:253-7. https://doi.org/10.1590/1517-869220202603209955

Schenkman M, Moore CG, Kohrt WM. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease. JAMA Neurol 2018;75:219-26. https//doi.org/10.1001/jamaneurol.2017.3517

Vasconcelos NN, Pereira LA, Silva RSR, Dias KSSA, Mourão TS, Pereira LC, et al. High-intensity physical exercise promotes increased brain injury in rats with cerebral ischemia induced by bilateral common carotid artery occlusion. Braz J Med Biol Res 2021;30:106148. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106148

Peixinho-Pena LF, Fernandes J, Almeida AA, Gomes FGN, Cassillhas R, Venancio DP, et al. A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy Behav 2012;25:323-8. https://doi.org/10.1016/j.yebeh.2012.08.011

Hornberger TA, Farrar JR. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J App Physiol Champaign 2004;29:16-31. https://doi.org/10.1139/h04-002

Cassilhas RC, Ismair TR, Daniel V, Jansen F, Sérgio T, Marco TDM. Animal model for progressive resistance exercise: a detailed description of model and its implications for basic research in exercise. Motriz 2012;19:178-84. https://doi.org/10.1590/S1980-65742013000100018

Lezcano LB, Pedre LDCL, Verdecia CIF, Sánchez TS, Fuentes NP, Turner LF, et al. Aplicación del test de la barra transversal modificado para evaluar ratas hemiparkinsonizadas. Acta Biol Colomb 2010;15:1-10.https://revistas.unal.edu.co/index.php/actabiol/article/view/11998/20523

Peretti AL, Antunes JS, Lovison K, Karvat J, Higuchi G, Brancalhão RMC, et al. Ação do exercício de subida em escada com sobrecarga na morfologia do músculo tibial anterior de ratos Wistars após axonotmeses. ConScie Saúde 2017;169:33-41. https://doi.org/10.5585/ConsSaude.v16n1.6625

Scorza FA, Antunes JS, Lovison K, Karvat J, Higuchi G, Brancalhão RMC, et al. The mitochondrial calcium uniporter: a new therapeutictarget for Parkinson’s disease-related cardiac dysfunctions? Clinics 2020;75:1-5. https://doi.org/10.6061/clinics/2020/e1299

Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L. Falls in Parkinson’s Disease: A Complex and Evolving Picture. Mov Disord 2017;32:1524-36. https://doi.org/10.1002/mds.27195

Junqueira LC, Carneiro J. Histologia básica. 13ª edição. Rio de Janeiro: Guanabara Koogan; 2017; 568p.

Herbin M. Gait parameters of treadmill versus overground locomotion in mouse. Behav Brain Res 2007;181:173-9. https//doi.org/10.1016/j.bbr.2007.04.001

Klaczko J, Ferreira ACM, Falcão AL, Dillenburg G, Oliveira IF, Wanderley PS, et al. Atlas fotográfico de anatomia comparada de vertebrados. Volume IV – Sistemas Esquelético e Muscular. Brasília: Universidade de Brasília. 2019. LIVRO_AtlasSistemasEsqueleticoMuscular animais.pdf

Magee DJ. Avaliação musculoesquelético. 5ª ed. Barueri: Manole; 2010; 1225p.

Neumann DA. Cinesiologia do aparelho musculoesquelético-fundamentos para reabilitação. 3ª ed. Rio de Janeiro: Guanabara Koogan; 2018; 776p.

Mesquita IG, Moreira GMS, Silva SV, Silveira AT, Silva LAS, Damázio LCM. Benefícios do treinamento com exercícios resistidos progressivos no desempenho motor e na hipertrofia muscular de ratos com doença de Parkinson. Fisioter Pesqui 2023;30:e22016223. http://doi.org/10.1590/1809-2950/e22016223pt

Moreno LCL, Bernanl-Pacheco O, Barrios GV, Cerquera CSC. Enfermedad de Parkinson y COVID-19: uma pandemia em médio de outra. Acta Neurol Colomb 2020;36(suppl):39-46. https://doi.org/10.22379/24224022292

Kapandji AI. Fisiologia Articular. 6ª ed. Rio de Janeiro: Guanabara Koogan; 2017; 346p.

Published

2023-11-07

How to Cite

Coelho, M. C. ., Souza, L. M. A. ., Teixeira, A. L., Souza, J. T. ., & Moreira Damázio, L. C. . (2023). Progressive resistance exercises as motor therapy for rats with Parkinson’s Disease. Revista Neurociências, 31, 1–18. https://doi.org/10.34024/rnc.2023.v31.15282

Issue

Section

Artigos Originais
##plugins.generic.dates.received## 2023-07-02
##plugins.generic.dates.accepted## 2023-10-25
##plugins.generic.dates.published## 2023-11-07

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.