Exercícios resistidos progressivos como terapia motora para ratos com Doença de Parkinson
DOI:
https://doi.org/10.34024/rnc.2023.v31.15282Palavras-chave:
Parkinson, Exercício Físico, Músculo EstriadoResumo
Introdução. A Doença de Parkinson (DP) é progressiva, afetando o Sistema Nervoso Central com degeneração da substância negra do mesencéfalo e diminuição da síntese de dopamina no striatum, levando a problemas de controle motor e movimentos voluntários. A atividade física é uma opção terapêutica não farmacológica na DP, mas ainda há escassez de estudos em animais. Método. Este estudo analisou os exercícios resistidos progressivos em ratos Wistar, antes e após a indução da DP por estimulação elétrica na substância negra do mesencéfalo por 10 segundos. Os ratos treinaram na escada vertical por 4 semanas, 5 dias/semana, até 45 minutos, mantendo uma Frequência Cardíaca Máxima entre 80-95%. Exercícios ocorreram antes e após a indução. Após o experimento e a eutanásia dos animais, o tecido nervoso e musculoesquelético das patas dianteira e traseira direitas foram coletados para análise histológica e histomorfométrica, utilizando técnicas de coloração de Nissl, Azul de Toluidina, Tricrômico de Gomori e Verhoeff. Resultados. Houve um aumento na área e no diâmetro das fibras musculares do músculo flexor longo do hálux (pata traseira) nos grupos exercitadores antes e antes e depois da DP. Entretanto, os exercícios não afetaram os componentes passivos de fibras de colágeno e elásticas nos músculos avaliados. Conclusão. Os exercícios resistidos progressivos demonstraram benefícios para o músculo flexor longo do hálux na pata traseira, mas não para o bíceps braquial na pata dianteira, em ratos com DP. Estes resultados fornecem insights importantes sobre os efeitos da atividade física resistida progressiva no contexto da DP.
Downloads
Métricas
Referências
López CLM, Pacheco OB, Vincos GB, Cleves SCC. Enfermedad de Parkinson y covid-19: una pandemia enmedio de otra. Acta Neurol Colomb 2020;36:39-46. https://doi.org/10.22379/24224022292
Conceição LR, Moura LP, Pauli JR. Benefícios do exercício físico nos distúrbios da doença de Parkinson induzidos em modelos animais. Rev Edu Fís 2019;25:E101957. https://doi.org/10.1590/1809-2950/e22016223pt3.Huxley H, Hanson J. Changes in the Cross-Striations of Muscle during Contraction and Stretch and their Structural Interpretation. Nature 1954;173:973-6. https://doi.org/10.1038/173973a0
Pondé PDS, Neto WK, Rodrigues DN, Cristina L, Bastos MF, Sanches EF, et al. Respostas crônicas do treinamento físico e de imagética na doença de Parkinson. Rev Bras Med Esporte 2019;25:503-8. https://doi.org/10.1590/1517-869220192506214238
Hayes MW, Fung VSC, Kimber TE, O’Sullivan JD. Updates and advances in the treatment of Parkinson disease. Med J Aust 2019;211:277-83. https://doi.org/10.5694/mja2.50224
Cheong SL, Federico S, Spalluto G, Klotz KN, Pastorin G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: transition from single-target to multitarget therapy. Drug Discov Today 2019;24:1769-83. https//doi.org/10.1016/j.drudis.2019.05.003
Damiani APL, Caldas LC, Melo AB, Contreiro CDE, Estevam WM, Nogueira BV, et al. Protocolos de treinamento de força promovem aumento da força sem alterações morfológicas. Rev Bras Med Esporte 2020;26:253-7. https://doi.org/10.1590/1517-869220202603209955
Schenkman M, Moore CG, Kohrt WM. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease. JAMA Neurol 2018;75:219-26. https//doi.org/10.1001/jamaneurol.2017.3517
Vasconcelos NN, Pereira LA, Silva RSR, Dias KSSA, Mourão TS, Pereira LC, et al. High-intensity physical exercise promotes increased brain injury in rats with cerebral ischemia induced by bilateral common carotid artery occlusion. Braz J Med Biol Res 2021;30:106148. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106148
Peixinho-Pena LF, Fernandes J, Almeida AA, Gomes FGN, Cassillhas R, Venancio DP, et al. A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy Behav 2012;25:323-8. https://doi.org/10.1016/j.yebeh.2012.08.011
Hornberger TA, Farrar JR. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J App Physiol Champaign 2004;29:16-31. https://doi.org/10.1139/h04-002
Cassilhas RC, Ismair TR, Daniel V, Jansen F, Sérgio T, Marco TDM. Animal model for progressive resistance exercise: a detailed description of model and its implications for basic research in exercise. Motriz 2012;19:178-84. https://doi.org/10.1590/S1980-65742013000100018
Lezcano LB, Pedre LDCL, Verdecia CIF, Sánchez TS, Fuentes NP, Turner LF, et al. Aplicación del test de la barra transversal modificado para evaluar ratas hemiparkinsonizadas. Acta Biol Colomb 2010;15:1-10.https://revistas.unal.edu.co/index.php/actabiol/article/view/11998/20523
Peretti AL, Antunes JS, Lovison K, Karvat J, Higuchi G, Brancalhão RMC, et al. Ação do exercício de subida em escada com sobrecarga na morfologia do músculo tibial anterior de ratos Wistars após axonotmeses. ConScie Saúde 2017;169:33-41. https://doi.org/10.5585/ConsSaude.v16n1.6625
Scorza FA, Antunes JS, Lovison K, Karvat J, Higuchi G, Brancalhão RMC, et al. The mitochondrial calcium uniporter: a new therapeutictarget for Parkinson’s disease-related cardiac dysfunctions? Clinics 2020;75:1-5. https://doi.org/10.6061/clinics/2020/e1299
Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L. Falls in Parkinson’s Disease: A Complex and Evolving Picture. Mov Disord 2017;32:1524-36. https://doi.org/10.1002/mds.27195
Junqueira LC, Carneiro J. Histologia básica. 13ª edição. Rio de Janeiro: Guanabara Koogan; 2017; 568p.
Herbin M. Gait parameters of treadmill versus overground locomotion in mouse. Behav Brain Res 2007;181:173-9. https//doi.org/10.1016/j.bbr.2007.04.001
Klaczko J, Ferreira ACM, Falcão AL, Dillenburg G, Oliveira IF, Wanderley PS, et al. Atlas fotográfico de anatomia comparada de vertebrados. Volume IV – Sistemas Esquelético e Muscular. Brasília: Universidade de Brasília. 2019. LIVRO_AtlasSistemasEsqueleticoMuscular animais.pdf
Magee DJ. Avaliação musculoesquelético. 5ª ed. Barueri: Manole; 2010; 1225p.
Neumann DA. Cinesiologia do aparelho musculoesquelético-fundamentos para reabilitação. 3ª ed. Rio de Janeiro: Guanabara Koogan; 2018; 776p.
Mesquita IG, Moreira GMS, Silva SV, Silveira AT, Silva LAS, Damázio LCM. Benefícios do treinamento com exercícios resistidos progressivos no desempenho motor e na hipertrofia muscular de ratos com doença de Parkinson. Fisioter Pesqui 2023;30:e22016223. http://doi.org/10.1590/1809-2950/e22016223pt
Moreno LCL, Bernanl-Pacheco O, Barrios GV, Cerquera CSC. Enfermedad de Parkinson y COVID-19: uma pandemia em médio de outra. Acta Neurol Colomb 2020;36(suppl):39-46. https://doi.org/10.22379/24224022292
Kapandji AI. Fisiologia Articular. 6ª ed. Rio de Janeiro: Guanabara Koogan; 2017; 346p.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Maisa Carla Coelho, Luiza Morais Araújo Souza, Ana Lívia Teixeira, Júlia Torga Souza, Laila Cristina Moreira Damázio

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aceito: 2023-10-25
Publicado: 2023-11-07