Correlações entre estereotipias no TEA e neurotransmissores: revisão sistemática

Autores

  • Fernanda Ingrid Oliveira Ramos Universidade Estadual do Ceará
  • Karen Gibson Terra Ferreira Martins
  • Tatiana Paschoallete Rodrigues Bachur Universidade UniChristus
  • Gislei Aragao Universidade Estadual Ceará

DOI:

https://doi.org/10.34024/rnc.2023.v31.14121

Palavras-chave:

Comportamento Estereotipado, Transtorno do Espectro Autista, Neurotransmissores, Modelos Animais

Resumo

Introdução. Há evidências que neurotransmissores e seus sistemas podem estar envolvidos na fisiopatologia de estereotipias motoras no Transtorno do Espectro Autista. Objetivo. Conduzir uma revisão para avaliar evidências sobre correlações entre comportamentos estereotipados e alterações nos sistemas de neurotransmissores, pela análise de artigos originais em modelo animal. Método. Estudos publicados entre janeiro de 2000 e janeiro de 2021 foram pesquisados em seis bases de dados e 19 estudos foram selecionados. A população, o método, os principais resultados e as conclusões dos artigos foram extraídos. Resultados. A análise revelou que os sistemas serotoninérgico, dopaminérgico, glutamatérgico, colinérgico e GABAérgico estavam envolvidos na modulação de estereotipias nos modelos animais do TEA. Em geral, a administração de antagonistas de receptors serotoninérgicos, glutamatérgicos e dopaminérgicos causaram uma redução no comportamento estereotipado, e a estimulação dos sistemas GABAérgico e colinérgico, através da administração de agonistas de receptors, também foram responsáveis por reduzir esses comportamentos. Houve algumas discrepâncias nas respostas dependendo das rotas de administração da droga e das áreas cerebrais, sugerindo que esses fatores também influenciam na fisiopatologia das estereotipias no TEA. Conclusão. Os estudos sugerem que a super-ativação dos sistemas serotoninérgico, glutamatérgico e dopaminérgico, assim como a supressão dos sistemas GABAérgico e colinérgico podem ter uma influência direta no aparecimento e na modulação de estereotipias. Registro: PROSPERO CRD42021235397

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association; 2013. https://doi.org/10.1176/appi.books.9780890425596

Péter Z, Oliphant ME, Fernandez TV. Motor Stereotypies: A Pathophysiological Review. Front Neurosci 2017;11:171. https://doi.org/10.3389/fnins.2017.00171

Ghanizadeh A. Clinical approach to motor stereotypies in autistic children. Iran J Ped 2010;20:149-59. https://pubmed.ncbi.nlm.nih.gov/23056697/

Muthugovindan D, Singer H. Motor stereotypy disorders. Curr Opin Neurol 2009;22:131-6. https://doi.org/10.1097/WCO.0b013e328326f6c8

Herbin M, Simonis C, Revéret L, Hackert R, Libourel P-A, Eugène D, et al. Dopamine Modulates Motor Control in a Specific Plane Related to Support. PLOS ONE 2016;11:e0155058. https://doi.org/10.1371/journal.pone.0155058

Schain RJ, Freedman DX. Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Ped 1961;58:315-20. https://doi.org/10.1016/s0022-3476(61)80261-8

Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2018;98:1080-98. https://doi.org/10.1016/j.neuron.2018.05.018

Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992;258:597-603. https://doi.org/10.1126/science.1329206

Petroff OAC. Book Review: GABA and Glutamate in the Human Brain. Neurosci 2002;8:562-73. https://doi.org/10.1177/1073858402238515

Schür RR, Draisma LWR, Wijnen JP, Boks MP, Koevoets MGJC, Joëls M, et al. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of1H-MRS studies. Hum Brain Mapp 2016;37:3337-52. https://doi.org/10.1002/hbm.23244

Lauder JM, Schambra UB. Morphogenetic roles of acetylcholine. Environ Health Perspec 1999;107(Suppl 1):65-9. https://doi.org/10.1289/ehp.99107s165

Karvat G, Kimchi T. Acetylcholine Elevation Relieves Cognitive Rigidity and Social Deficiency in a Mouse Model of Autism. Neuropsychopharmacol 2013;39:831-40. https://doi.org/10.1038/npp.2013.274

Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R. Dopamine and Levodopa Prodrugs for the Treatment of Parkinson’s Disease. Molecules 2017;23:40. https://doi.org/10.3390/molecules23010040

National Toxicology Program (NTP). Office of Health Assessment and Translation (OHAT): Risk of Bias Rating Tool for Human and Animal Studies. 2015. https://ntp.niehs.nih.gov/ntp/ohat/pubs/riskofbiastool_508.pdf

National Heart, Lung, and Blood Institute (NHLBI). Study quality assessment tools. Bethesda: U.S. Department of Health & Human Services. 2013. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

Amodeo DA, Rivera E, Cook EH, Sweeney JA, Ragozzino ME. 5HT2Areceptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice. Genes Brain Behav 2016;16:342-51. https://doi.org/10.1111/gbb.12343

Canal CE, Felsing DE, Liu Y, Zhu W, Wood JT, Perry CK, et al. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist That Corrects Motor Stereotypy in Mouse Models. ACS Chem Neurosci 2015;6:1259-70. https://doi.org/10.1021/acschemneuro.5b00099

Mohammadi S, Asadi-Shekaari M, Basiri M, Parvan M, Shabani M, Nozari M. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacol 2019;237:199-208. https://doi.org/10.1007/s00213-019-05357-2

Jiang S, Xiao L, Sun Y, He M, Gao C, Zhu C, et al. The GABAB receptor agonist STX209 reverses the autism like behaviour in an animal model of autism induced by prenatal exposure to valproic acid. Mol Med Rep 2022;25:5. https://doi.org/10.3892/mmr.2022.12670

Jiang S, He M, Xiao L, Sun Y, Ding J, Li W, et al. Prenatal GABAB Receptor Agonist Administration Corrects the Inheritance of Autism-Like Core Behaviors in Offspring of Mice Prenatally Exposed to Valproic Acid. Front Psychiatr 2022;13:835993. https://doi.org/10.3389/fpsyt.2022.835993

Silverman JL, Pride MC, Hayes JE, Puhger KR, Butler-Struben HM, Baker S, et al. GABAB Receptor Agonist R-Baclofen Reverses Social Deficits and Reduces Repetitive Behavior in Two Mouse Models of Autism. Neuropsychopharmacol 2015;40:2228-39. https://doi.org/10.1038/npp.2015.66

Venkatachalam K, Eissa N, Awad MA, Jayaprakash P, Zhong S, Stölting F, et al. The histamine H3R and dopamine D2R/D3R antagonist ST-713 ameliorates autism-like behavioral features in BTBR T+tf/J mice by multiple actions. Biomed Pharmacother 2021;138:111517. https://doi.org/10.1016/j.biopha.2021.111517

Yang Y, Wang B, Zhong Z, Chen H, Ding W, Hoi MPM. Clonazepam attenuates neurobehavioral abnormalities in offspring exposed to maternal immune activation by enhancing GABAergic neurotransmission. Biochem Pharmacol 2021;192:114711. https://doi.org/10.1016/j.bcp.2021.114711

Yang J-Q, Yang C-H, Yin B-Q. Combined the GABA-A and GABA-B receptor agonists attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Behav Brain Res 2021;403:113094. https://doi.org/10.1016/j.bbr.2020.113094

Yoshimura RF, Tran MB, Hogenkamp DJ, Ayala NL, Johnstone T, Dunnigan AJ, et al. Allosteric modulation of nicotinic and GABA A receptor subtypes differentially modify autism-like behaviors in the BTBR mouse model. Neuropharmacol 2017;126:38-47. https://doi.org/10.1016/j.neuropharm.2017.08.029

Folk GE, Long JP. Serotonin as a neurotransmitter: A review. Comp Biochem Physiol C Comp Pharmacol Toxicol 1988;91:251-7. https://doi.org/10.1016/0742-8413(88)90193-4

Lovenberg W, Jequier E, Sjoerdsma A. Tryptophan Hydroxylation: Measurement in Pineal Gland, Brainstem, and Carcinoid Tumor. Science 1967;155:217-9. https://doi.org/10.1126/science.155.3759.217

Amodeo DA, Rivera E, Dunn JT, Ragozzino ME. M100907 attenuates elevated grooming behavior in the BTBR mouse. Behav Brain Res 2016;313:67-70. https://doi.org/10.1016/j.bbr.2016.06.064

Amodeo DA, Oliver B, Pahua A, Hitchcock K, Bykowski A, Tice D, et al. Serotonin 6 receptor blockade reduces repetitive behavior in the BTBR mouse model of autism spectrum disorder. Pharmacol Biochem Behav 2021;200:173076. https://doi.org/10.1016/j.pbb.2020.173076

Silverman JL, Tolu SS, Barkan CL, Crawley JN. Repetitive Self-Grooming Behavior in the BTBR Mouse Model of Autism is Blocked by the mGluR5 Antagonist MPEP. Neuropsychopharmacol 2009;35:976–89. https://doi.org/10.1038/npp.2009.201

Raote I, Bhattacharya A, Panicker MM, Chattopadhyay A (eds). Serotonin 2A (5-HT2A) Receptor Function: Ligand-Dependent Mechanisms and Pathways. In: Serotonin Receptors in Neurobiology. Boca Raton: CRC Press/Taylor & Francis; 2007; chap 6. https://pubmed.ncbi.nlm.nih.gov/21204452/

Delmonte S, Gallagher L, O’Hanlon E, McGrath J, Balsters JH. Functional and structural connectivity of frontostriatal circuitry in Autism Spectrum Disorder. Front Hum Neurosci 2013;7:430. https://doi.org/10.3389/fnhum.2013.00430

Woolley ML, Marsden CA, Fone KCF. 5-ht6 receptors. Current drug targets CNS Neurolog Disord 2004;3:59-79. https://doi.org/10.2174/1568007043482561

Pompeiano M, Palacios J, Mengod G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 1992;12:440-53. https://doi.org/10.1523/JNEUROSCI.12-02-00440.1992

Spooren W, Lindemann L, Ghosh A, Santarelli L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trend Pharmacol Sci 2012;33:669-84. https://doi.org/10.1016/j.tips.2012.09.004

Thomas D, Hagan J. 5-HT7 Receptors. Curr Drug Target CNS Neurolog Disord 2004;3:81-90. https://doi.org/10.2174/1568007043482633

Guillery RW, Sherman SM. The thalamus as a monitor of motor outputs. Philos Trans R Soc Lond B Biol Sci 2002;357:1809-21. https://doi.org/10.1098/rstb.2002.1171

Gu F, Chauhan V, Chauhan A. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism. J Neurosci Res 2017;95:1965-72. https://doi.org/10.1002/jnr.24027

Juárez Olguín H, Calderón Guzmán D, Hernández García E, Barragán Mejía G. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxid Med Cel Longev 2016;2016:1-13. https://doi.org/10.1155/2016/9730467

Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: An update for the 21st century. J Psychopharmacol 2015;29:97-115. https://doi.org/10.1177/0269881114563634

Tibbo P, Warneke L. Obsessive-compulsive disorder in schizophrenia: epidemiologic and biologic overlap. J Psychiatr Neurosci 1999;24:15-24. https://pubmed.ncbi.nlm.nih.gov/9987204/

De Corte BJ, Wagner LM, Matell MS, Narayanan NS. Striatal dopamine and the temporal control of behavior. Behav Brain Res 2019;356:375-9. https://doi.org/10.1016/j.bbr.2018.08.030

Lee Y, Kim H, Han P-L. Striatal Inhibition of MeCP2 or TSC1 Produces Sociability Deficits and Repetitive Behaviors. Exp Neurobiol 2018;27:539-49. https://doi.org/10.5607/en.2018.27.6.539

Wang W, Li C, Chen Q, van der Goes M-S, Hawrot J, Yao AY, et al. Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. J Clin Investig 2017;127:1978-90. https://doi.org/10.1172/JCI87997

Staal WG. Autism, DRD3 and repetitive and stereotyped behavior, an overview of the current knowledge. Eur Neuropsychopharmacol 2015;25:1421-6. https://doi.org/10.1016/j.euroneuro.2014.08.011

Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine Receptors: from Structure to Function. Physiol Rev 1998;78:189-225. https://doi.org/10.1152/physrev.1998.78.1.189

Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 2018;555:269-73. https://doi.org/10.1038/nature25758

Sander K, Kottke T, Stark H. Histamine H3 Receptor Antagonists Go to Clinics. Bio Pharmac Bull 2008;31:2163-81. https://doi.org/10.1248/bpb.31.2163

Shan L, Bao A-M, Swaab DF. The human histaminergic system in neuropsychiatric disorders. Trend Neurosci 2015;38:167-77. https://doi.org/10.1016/j.tins.2014.12.008

Hamilton PJ, Campbell NG, Sharma S, Erreger K, Herborg Hansen F, Saunders C, et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatr 2013;18:1315-23. https://doi.org/10.1038/mp.2013.102

DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh KE, West A, et al. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J Clin Investig 2019;129:3407-19. https://doi.org/10.1172/JCI127411

Enna SJ. The GABA Receptors. 3rd ed. GABA Recep 2007; pp1-21. https://doi.org/10.1007/978-1-59745-465-0_1

Pizzarelli R, Cherubini E. Alterations of GABAergic Signaling in Autism Spectrum Disorders. Neural Plast 2011;2011:1-12. https://doi.org/10.1155/2011/297153

Chao H-T, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 2010;468:263-9. https://doi.org/10.1038/nature09582

Cogram P, Deacon RMJ, Warner-Schmidt JL, von Schimmelmann MJ, Abrahams BS, During MJ. Gaboxadol Normalizes Behavioral Abnormalities in a Mouse Model of Fragile X Syndrome. Front Behav Neurosci 2019;13:141. https://doi.org/10.3389/fnbeh.2019.00141

Ebihara K, Fujiwara H, Awale S, Dibwe DF, Araki R, Yabe T, et al. Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD. Behav Brain Res 2017;334:6-15. https://doi.org/10.1016/j.bbr.2017.07.019

Kotajima-Murakami H, Hagihara H, Sato A, Hagino Y, Tanaka M, Katoh Y, et al. Exposure to GABAA Receptor Antagonist Picrotoxin in Pregnant Mice Causes Autism-Like Behaviors and Aberrant Gene Expression in Offspring. Front Psychiatr 2022;13:821354. https://doi.org/10.3389/fpsyt.2022.821354

Zhang L, Huang C-C, Dai Y, Luo Q, Ji Y, Wang K, et al. Symptom improvement in children with autism spectrum disorder following bumetanide administration is associated with decreased GABA/glutamate ratios. Translat Psychiatr 2020;10:1-12. https://doi.org/10.1038/s41398-020-0692-2

Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatr 2019;24:1248-57. https://doi.org/10.1038/s41380-019-0426-0

Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003;2:255-67. https://doi.org/10.1034/j.1601-183x.2003.00037.x

Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Bioa Med 2021;246:1069-83. https://doi.org/10.1177/1535370221989263

Nelson SB, Valakh V. Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron 2015;87:684-98. https://doi.org/10.1016/j.neuron.2015.07.033

Sadybekov A, Tian C, Arnesano C, Katritch V, Herring BE. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nature Comm 2017;8:1. https://doi.org/10.1038/s41467-017-00472-0

Schmidt S, Debant A. Function and regulation of the Rho guanine nucleotide exchange factor Trio. Small GTPases 2014;5:e983880. https://doi.org/10.4161/sgtp.29769

Horder J, Petrinovic MM, Mendez MA, Bruns A, Takumi T, Spooren W, et al. Glutamate and GABA in autism spectrum disorder—a translational magnetic resonance spectroscopy study in man and rodent models. Translat Psychiatr 2018;8:106. https://doi.org/10.1038/s41398-018-0155-1

Kim H, Kim T-K, Kim J-E, Park J-Y, Lee Y, Kang M, et al. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices. Mol Brain 2014;7:77. https://doi.org/10.1186/s13041-014-0077-7

Kim H, Lee Y, Park J-Y, Kim J-E, Kim T-K, Choi J, et al. Loss of Adenylyl Cyclase Type-5 in the Dorsal Striatum Produces Autistic-Like Behaviors. Mol Neurobiol 2017;54:7994-8008. https://doi.org/10.1007/s12035-016-0256-x

Presti MF, Mikes HM, Lewis MH. Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation. Pharmacol Biochem Behav 2003;74:833-9. https://doi.org/10.1016/s0091-3057(02)01081-x

Burket JA, Herndon AL, Winebarger EE, Jacome LF, Deutsch SI. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: Possible implications for the pharmacotherapy of autism spectrum disorders. Brain Res Bull 2011;86:152-8. https://doi.org/10.1016/j.brainresbull.2011.08.001

Mehta MV, Gandal MJ, Siegel SJ. mGluR5-Antagonist Mediated Reversal of Elevated Stereotyped, Repetitive Behaviors in the VPA Model of Autism. PLoS ONE 2011;6:e26077. https://doi.org/10.1371/journal.pone.0026077

Aguilar-Valles A, Matta-Camacho E, Khoutorsky A, Gkogkas C, Nader K, Lacaille J-C, et al. Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2. J Neurosci 2015;35:11125-32. https://doi.org/10.1523/JNEUROSCI.4615-14.2015

Kang J, Kim E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors. Front Mol Neurosci 2015;8:17. https://doi.org/10.3389/fnmol.2015.00017

Wu H-F, Chen PS, Hsu Y-T, Lee C-W, Wang T-F, Chen Y-J, et al. D-Cycloserine Ameliorates Autism-Like Deficits by Removing GluA2-Containing AMPA Receptors in a Valproic Acid-Induced Rat Model. Mol Neurobio 2017;55:4811-24. https://doi.org/10.1007/s12035-017-0685-1

Adil KJ, Gonzales EL, Remonde CG, Boo K-J, Jeon SJ, Shin CY. Autism-Like Behavioral Phenotypes in Mice Treated with Systemic N-Methyl-D-Aspartate. Biomol Therap 2022;30:232-7. https://doi.org/10.4062/biomolther.2021.133

Kim S, Kim DG, Gonzales E luck, Mabunga DFN, Shin D, Jeon SJ, et al. Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice. Biomol Therap 2019;27:168-77. https://doi.org/10.4062/biomolther.2018.230

Schade S, Paulus W. D-Cycloserine in Neuropsychiatric Diseases: A Systematic Review. Inter J Neuropsychopharmacol 2015;19:pyv102. https://doi.org/10.1093/ijnp/pyv102

Mukaetova-Ladinska EB, Westwood J, Perry EK. Cholinergic Component of Autism Spectrum Disorder. Neurochem Basis Autism 2010;1:129-61. https://doi.org/10.1007/978-1-4419-1272-5_9

Brown DA. Muscarinic Acetylcholine Receptors (mAChRs) in the Nervous System: Some Functions and Mechanisms. J Mol Neurosci 2010;41:340-6. https://doi.org/10.1007/s12031-010-9377-2

Lester DB, Rogers TD, Blaha CD. Acetylcholine-Dopamine Interactions in the Pathophysiology and Treatment of CNS Disorders. CNS Neurosci Therap 2010;16:137-62. https://doi.org/10.1111/j.1755-5949.2010.00142.x

Amodeo DA, Yi J, Sweeney JA, Ragozzino ME. Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice. Front Synaptic Neurosci 2014;6:17. https://doi.org/10.3389/fnsyn.2014.00017

Kim JW, Seung H, Kwon KJ, Ko MJ, Lee EJ, Oh HA, et al. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism. PLoS One 2014;9:e104927. https://doi.org/10.1371/journal.pone.0104927

Downloads

Publicado

2023-02-27

Como Citar

Oliveira Ramos, F. I., Martins, K. G. T. F. ., Paschoallete Rodrigues Bachur, T., & Aragao, G. (2023). Correlações entre estereotipias no TEA e neurotransmissores: revisão sistemática. Revista Neurociências, 31, 1–40. https://doi.org/10.34024/rnc.2023.v31.14121

Edição

Seção

Revisão Sistemática
Recebido: 2022-07-26
Aceito: 2023-02-06
Publicado: 2023-02-27

Artigos mais lidos pelo mesmo(s) autor(es)