Análise da potência absoluta na banda gama no córtex pré-frontal após diagonal de membro superior

  • Alice Aragão de Araújo UFPI
  • Janaína Moraes Silva UESPI
  • Tassiane Maria Alves Pereira UNINASSAU
  • Rayele Moreira UESPI
  • Monara Nunes UESPI
  • Kaline Rocha UESPI
  • Silmar Silva Teixeira UFPI
  • Marco Orsini Universidade de Vassouras
  • Adalgiza Mafra Moreno UNIG
  • Aluana Santana Carlos UNIG
  • Pedro Ribeiro UFRJ
  • Bruna Velasques UFRJ
  • Victor Hugo Bastos UFPI
  • Eduardo Jorge Custódio da Silva UERJ
  • Ulisses Cerqueira Linhares Universidade de Vassouras
  • Rossano Fiorelli Universidade de Vassouras
  • Maria Izabel Muller Universidade de Vassouras
  • Giseli Roque de Souza Universidade de Vassouras
Palavras-chave: EEG, Banda Beta, Potência Absoluta

Resumo

No âmbito da fisioterapia, movimentos realizados em diagonal por meio de padrões específicos visam a recuperação funcional dos pacientes. Esses exercícios terapêuticos são utilizados com o intuito de evitar lesões, sendo benéficos nos programas que promovam alongamento e fortalecimento. No entanto, embora movimentos em diagonal sejam bastante utilizados na prática clínica, as repercussões corticais provocadas por esse tipo de movimento ainda são desconhecidas. Objetivo. O objetivo deste estudo foi investigar quais as repercussões eletrofisiológicas dos movimentos em diagonal por meio da análise da potência absoluta na banda gama no córtex pré-frontal. Método. A amostra foi composta por 20 voluntárias, com idade entre 18 a 28 anos, destras, não praticantes de atividade física e com Índice de Massa Corpórea (IMC) entre 18,50 a 24,99. Foram utilizadas ANOVA mista de um, dois e três fatores seguido do teste de post hoc. Resultados. Observamos interação entre os fatores grupos, áreas corticais e momentos. Conclusão. Concluímos que o treinamento em diagonal promove alterações na atividade cortical uma vez que um aumento da potência absoluta na banda gama no córtex pré-frontal, à medida que o sujeito realizava a tarefa, foi observado.

Métricas

Carregando métricas...

Referências

1.Westwater-Wood S, Adams N, Kerry R. The use of Proprioceptive Neuromuscular Facilitation in physiotherapy practice. Phys Therp Rev 2010;15:23-8.https://doi.org/10.1179/174328810X12647087218677
2.Alencar RF, Cordeiro TGF, Anjos PGS, Cavalcanti PL. Facilitação Neuromuscular Proprioceptiva em tatame na reaquisição de funções na lesão medular. Rev Neurocienc 2011;19:512-8.
3.Hindle KB, Whitcomb TJ, Briggs WO, Hong J. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function. J Hum Kinet 2012;31:105-13. https://doi.org/10.2478/v10078-012-0011-y
4.Lee SW, Lee JH. Effects of Proprioceptive Neuromuscular Facilitation Stretching and Kinesiology Taping on Pelvic Compensation During Double-Knee Extension. J Hum Kinet 2015;49:55-64. https://doi.org/10.1515/hukin-2015-0108
5.Gontijo LB, Pereira PD, Neves CD, Santos AP, Machado Dde C, Bastos VH. Evaluation of Strength and Irradiated Movement Pattern Resulting from Trunk Motions of the Proprioceptive Neuromuscular Facilitation. Rehabil Res Pract 2012;2012:281937. https://doi.org/10.1155/2012/281937
6.Kim CH, Kim YN. Effects of Proprioceptive Neuromuscular Facilitation and Treadmill Training on the Balance and Walking Ability of Stroke Patients. J Kor Phys Ther 2018:30:79-83. https://doi.org/10.18857/jkpt.2018.30.3.79
7.Lazarou L, Kofotolis N, Pafis G, Kellis E. Effects of two proprioceptive training programs on ankle range of motion, pain, functional and balance performance in individuals with ankle sprain. J Back and Musculoskelet Rehabil 2018;31:437-46. https://doi.org/10.3233/BMR-170836
8.Kim Y, Kim E, Gong W. The effects of trunk stability exercise using PNF on the functional reach test and muscle activities of stroke patients. J Phys Ther Sci 2011;23:699-702. https://doi.org/10.1589/jpts.23.699
9.Yoo B, Park H, Heo K, Lee J, Lee J, Oh T, et al. The Effects of Abdominal Hollowing in Lower-limb PNF Pattern Training on the Activation of Contralateral Muscles. J Phys Ther Sci 2013;25:1335-8. https://doi.org/10.1589/jpts.25.1335
10.Ferreira MG, Bertor WRR, Carvalho AR, Bertolini GRF. Effects of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump variables. Sci Med 2015;25:ID21443. http://dx.doi.org/10.15448/1980-6108.2015.4.21443
11.Seo KC, Kim HA. The effects of ramp gait exercise with PNF on stroke patients dynamic balance. J Phys Ther Sci 2015; 27:1747-9. https://doi.org/10.1589/jpts.27.1747
12.Aman JE, Elangovan N, Yeh I-L, Konczak J. The effectiveness of proprioceptive training for improving motor function: a systematic review. Front Human Neurosci 2015;8:1075. https://doi.org/10.3389/fnhum.2014.01075
13.Vogt T, Kato K, Fluthmann N, Bloch O, Nakata H, Kanosue K. Performance control in one consecutive motor task sequence – Αpproaching central neuronal motor behaviour preceding isometric contraction onsets and relaxation offsets at lower distinct torques. J Musculoskelet Neuronal Interact 2018;18:1-8.
14.Oswal A, Litvak V, Brücke C, Huebl J, Schneider GH, Kühn AA, et al. Cognitive Factors Modulate Activity within the Human Subthalamic Nucleus during Voluntary Movement in Parkinson’s Disease. J Neurosci 2013;33:15815-26.
https://doi.org/10.1523/JNEUROSCI.1790-13.2013
15.Owolabi L, Sale S, Owolabi S. Clinico-Electroencephalography Pattern and Determinant of 2-year Seizure Control in Patients with Complex Partial Seizure Disorder in Kano, Northwestern Nigeria. Ann Med Health Sci Res 2014:4:186-91. https://doi.org/10.4103/2141-9248.129030
16.Reinke L, van der Hoeven JH, van Putten MJ, Dieperink W, Tulleken JE. Intensive care unit depth of sleep: proof of concept of a simple electroencephalography index in the non-sedated. Crit Care 2014;18:R66. https://doi.org/10.1186/cc13823
17.Carvalho MR, Velasques BB, Cagy M, Marques JB, Teixeira S, Nardi AE, et al. Electroencephalographic findings in panic disorder. Trends Psychiatry Psychother 2013; 35:238-51.
https://doi.org/10.1590/2237-6089-2013-0012
18.Cunha M, Machado S, Miana LC, Machado D, Bastos VH, et al. Effects of a cognitive modulator in the theta and alpha asymmetry during a typewriting task. Arq Neuropsiquiatr 2009;67:214-8. http://dx.doi.org/10.1590/S0004-282X2009000200008
19.Machado DCD, Santos RPMS, Silva AP, Reis-Filho SBS, Aves GVS, Cagy M, et al. Electroencephalographic analysis in left hemiparesis: a case study. Rev Bras Neurol 2013;49:129-6.
20.Mosanezhad JE, Nazari MA. Effectiveness of EEG-Biofeedback on Attentiveness, Working Memory and Quantitative Electroencephalography on Reading Disorder. Iran J Psychiatry Behav Sci 2013;7:35-43.
21.Nasseroleslami B, Lakany H, Conway BA. EEG signatures of arm isometric exertions in preparation, planning and execution. Neuroimage 2015;90:1-14.
http://dx.doi.org/10.1016/j.neuroimage.2013.12.011
22.Machado D, França JHS, Teixeira S, Basto VHV, Santos RPM, Cagy M, et al. Gamma absolute power reveals activation of motor áreas after hand immobilization. MedicalExpress (Sao Paulo, online) 2016;3:M160504.http://dx.doi.org/10.5935/MedicalExpress.2016.05.04
23.Bonini-Rocha AC, Timm MI, Chiaramonte M, Zaro M, Rasia-Filho AA, Wolff D, et al. Methodology to observation and quantification of EEG signs related to cognitive evidences of motor learning. Ciências & Cognição 2008;13:27-50.
24.van Es MWL, Schoffelen JM. Stimulus-induced gamma power predicts the amplitude of the subsequente visual evoked response. NeuroImage 2019;186:703-12.
http://dx.doi.org/10.1016/j.neuroimage.2018.11.029
25.Teixeira S, Velasques B, Machado S, Cunha M, Domingues CA, Budde H, et al. Gamma-band oscillations in fronto-central areas during performance of a sensorimotor integration task: A qEEG coherence study. Neurosci Lett 2010;483:114-7. http://dx.doi.org/10.1016/j.neulet.2010.07.073
26.Grossmann T, Johnson MH, Lloyd-Fox S, Blasi A, Deligianni F, Elwell C, et al. Early cortical specialization for face-to-face communication in human infants. Proc Biol Sci 2008;275:2803-11. http://dx.doi.org/10.1098/rspb.2008.0986
27.Silva AAS, Trindade-Filho EM. Diferenças no processamento cerebral, através do ritmo gama, durante o pensamento divergente. Rev Neurocienc 2015;23:589-94.
http://dx.doi.org/10.4181/RNC.2015.23.04.968.06p
28.Oldfield RC. The assessment and analysis of handedness: the Edinburg inventory. Neuropsychologia 1971;9:97-113.
29.Hallal P, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 2012;380:247-57.
http://dx.doi.org/10.1016/S0140-6736(12)60646-1
30.World Health Organization. Physical Status: the use of interpretation of anthropometry. Report of a Who Expert Committee (endereço na internet). Geneva: WHO, 1995. (acessado em 2018). Disponível em: https://www.who.int/childgrowth/publications/physical_status/en/
31.Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004;134:9-21.
32.Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000;37:163-78.
33.Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S. Independent EEG Sources are Dipolar. PLoS ONE 2012;7:e30135. http://dx.doi.org/10.1371/journal.pone.0030135
34.Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 2009;41:3-13.
http://dx.doi.org/10.1249/MSS.0b013e31818cb278
35.Fayers M, Machin D. Sample size: how many patients are necessary? Br J Cancer 1995;72:1-9.
36.Herrmann CS, Fründ I, Lens D. Human gamma-band activity: a review of cognitive and behavioral 86 correlates and network models. Neurosci Biobehav Rev 2010;34:981-92.
http://dx.doi.org/10.1016/j.neubiorev.2009.09.001
37.Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, et al. Gamma oscillations correlate with working memory load in humans. Cereb Cortex 2003;13:1369-75. https://doi.org/10.1093/cercor/bhg084
38.Sinai CW, Bowers CW, Crainiceanu CM, Boatman D, Gordon B, Lesser RP, et al. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain 2005;128:1556-70. https://doi.org/10.1093/brain/awh491
39.Slobounov S, Hallet M, Stanhope S, Shibasaki H. Role of cerebral cortex in human postural control: an EEG study. Clin Neurophysiol 2005;116:315-23. https://doi.org/10.1016/j.clinph.2004.09.007
40.Fuster JM. The prefrontal cortex. 4th ed. London: Academic Press, 2008, 460p.
41.Mourão Junior CA, Melo LBR. Integration of three concepts: executive function, working memory and learning. Psicologia: Teoria e Pesquisa 2012;27:309-14. https://doi.org/10.1590/S0102-37722011000300006
42.Ackerman CM, Courtney SM. Spatial relations and spatial locations are dissociated within pré-frontal and parietal córtex. J Neurophysiol 2012;108:2419-29. https://doi.org/10.1152/jn.01024.2011
43.Machado S, Cunha M, Portella CE, Silva JG, Velasques B, Bastos VH, et al. Integration of cortical areas during performance of a catching ball task. Neurosci Left 2008;446:7-10. https://doi.org/10.1016/j.neulet.2008.09.036
44.Velasques S, Machado S, Portella CE, Silva JG, Basile LF, Cagy M, et al. Electrophysiological analysis of a sensorimotor integration task. Neurosci Lett 2007;426:155-9.
https://doi.org/10.1016/j.neulet.2007.08.061
45.Szurhaj W, Derambure P, Labyt E, Cassim F, Bourriez JL, Isnard J, et al. Basic mechanisms of central rhythms reactivity to preparation and execution of a voluntary movement: a stereoelectroencephalographic study. Clin Neurophysiol 2003;114:107-19. https://doi.org/10.1016/S1388-2457(02)00333-4
46.Barbey AK, Koenigs M, Grafman J. Dorsolateral Prefrontal Contributions to Human Working Memory. Cortex 2013;49:1195-205.
https://doi.org/10.1016/j.cortex.2012.05.022
47.Nyberg L, Cabeza R, Tulving E. PET studies of encoding and retrieval: the HERA model. Psychonomic Bull Rev 1995;3:135-48. https://doi.org/10.3758/BF03212412
48.Thach WT. On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav Brain Sci 1996;19:411-31.
https://doi.org/10.1017/S0140525X00081504
49.Bressler SL. The gamma wave: a cortical information carrier? Trends Neurosci 1990;13:161-2. https://doi.org/10.1016/0166-2236(90)90039-D
50.Bonini-Rocha AC, Timm MI, Chiaramonte MS, Zaro MA. Metodologia para observação e quantificação de sinais de EEG relativos a evidências cognitivas de aprendizagem motora. Ciências & Cognição 2008;13:27-50.
51.Medendorp WP, Goltz HC, Vilis T, Crawford JD. Gaze-centered updating of visual space in human parietal cortex. J Neurosci 2003;23:6209-14. https://doi.org/10.1523/JNEUROSCI.23-15-06209.2003
52.Avillac M, Deneve S, Olivier E, Pouget A, Duhamel JR. Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci 2005;8:941-9.
53.Mourão-Junior CA, Melo LBR. Integração de Três Conceitos: Função Executiva, Memória de Trabalho e Aprendizado. Psic: Teor e Pesq 2011;27:309-14. http://dx.doi.org/10.1590/S0102-37722011000300006
54.Moreno MA, Silva E, Zuttin RS, Gonçalves M. Efeito de um programa de treinamento de facilitação neuromuscular proprioceptiva sobre a mobilidade torácica. Fisioter Pesq 2009;16:161-5. http://dx.doi.org/10.1590/S1809-29502009000200012
Publicado
2018-10-09
Como Citar
Aragão de Araújo, A., Moraes Silva, J., Alves Pereira, T. M., Moreira, R., Nunes, M., Rocha, K., Silva Teixeira, S., Orsini, M., Mafra Moreno, A., Santana Carlos, A., Ribeiro, P., Velasques, B., Bastos, V. H., Custódio da Silva, E. J., Cerqueira Linhares, U., Fiorelli, R., Muller, M. I., & Roque de Souza, G. (2018). Análise da potência absoluta na banda gama no córtex pré-frontal após diagonal de membro superior. Revista Neurociências, 26, 1-23. https://doi.org/10.34024/rnc.2018.v26.9860
Seção
Artigos Originais

##plugins.generic.recommendByAuthor.heading##