Aprendizagem e Memória

Contexto Motor

Autores

  • C. S.C. Sá Professora da Universidade de Uberaba e Faculdades Integradas de Patrocínio, MG. Mestre em Psicologia na Área de Neurociências e Comportamento pela USP.
  • C. C. Medalha Ex-professora da Universidade de Uberaba. Doutoranda em Ciências Fisiológicas – UFSCAR

DOI:

https://doi.org/10.34024/rnc.2001.v9.8913

Palavras-chave:

Memória, aprendizado, aprendizado motor

Resumo

O SN tem duas funções básicas: a manutenção da homeostase do organismo e a emissão de comportamentos. Estes são resultados da interação dos fatores genéticos com o ambiente, sofrendo modificações constantes, as quais resultam dos processos neurobiológicos que definem a aprendizagem. O aprendizado e a memória são divididos em dois tipos: o declarativo (explícito) e não declarativo (implícito). Esses dois tipos de aprendizado apresentam características, estruturas anatômicas e maneiras de aquisição distintas. O objetivo deste artigo é mostrar as diferenças entre os tipos de aprendizado e memória, enfocando o aprendizado motor.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Timo-Iaria C. Organização do Sistema nervoso. In: Canela HM, Assis JL, Scaff M. Fisiopatologia do sistema nervoso. São Paulo, Sarvier, 1983.

Kandel ER, Schwartz JH, Jessel TM. Essentials of neural science and behaviour. Nova Jersey, Appleton & Lange, 1995.

Luria AR. Fundamentos de neuropsicologia. Rio de Janeiro, Livros Técnicos e Científicos Editora S.A, 1981.

Berguson H. Matiere et memorie. Paris, 1896.

Lashley KS. In search of the engram. In: Physiological mechanisms in animal behavior, Academic Press, 1950.

Hydén H. The neuron. In: Brachet J e Mirsky AE (ed). The Cell. Academic Press, 1960.

Hydén H. A molecular basis of neuron-glia interaction. Macromolecular specificity and biological memory. In: Schmitt FO (ed). MIT Press, 1962.

Hydén H. RNA: a funcional characeristic of neuron and glia in learning. In: RNA and brain function in learning. Brazier M (ed), Berkeley and Los Angeles, 1964.

de Robertis EDP. Histopathology of synapses and neurosecretion. Paris, Pergamon Press, 1964.

Eccles JC. The physiology of synapses. Spring Verlag, 1964.

Cohen RP. Preserved learning capacity in amnesia: evidence for multiple memory systems. In: L. R. Squire, N. Butters (ed). Neuropsychology of memory. New York, 1984. pp. 83-103.

Schacter D. Implicit memory: history and current status. Journal of Experimental Psychology of Learning, Memory and Cognition, 13:501-18, 1987.

Squire LR. Memory and the hippocampus: a synthesis from finding with rats, monkeys and humans. Psychological review, 99:195-231, 1992.

Tulving E. How many memory systems are there? American Psychopharmacology, 40:385-98, 1985.

Squire LR e Zola-Morgan. Memory brain systems and behavior. Trends Neurosci, 11:170-5, 1988.

Dickinson A. Contemporary animal learning theory. Cambridge, Cambridge University Press, 1980.

Kandel ER e Schwartz JH. Principles of neural science. New York, Elsevier, 1991.

Millenson JR. Princípios de análise do comportamento. Tradução de Alina de Almeida Souza e Dione de Rezende. Brasília, Ed. Coordenada, 1967.

Castellucci VF, Carew TJ, Kandel ER. Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia california. Science, 202:1306-8, 1978.

Frost WN, Castellucci VF, Hawkins RD, Kandel ER. Monosynaptic connections from the sensory neurons participate in the storage of long-term memory in Aplysia. Proceedings of the National Academy of Sciences of the United States of America, 82:8266-9, 1985.

Hazeltine E, Grafton ST, Ivry R. Attention and stimuls characteristics determine the locus of motor-sequence encoding. A PET study. Brain, 120(Pt.1):123-40, 1997.

Lang W, Lang M, Kornhuber A, Deecke L, Kornhuber HH. Human cerebral potentials and visuomotor learning. Pflugers Archives, 399:342-4, 1983.

Lang W, Lang M, Podreka I, Steiner M, Uhl F, Suess E, Muller C, Deecke L DC- potential shifys and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning. Experimental Brain Reseaech, 71:353-64, 1988.

Seitz RJ, Roland PE, Bohm C, Greitz T, Stone-Elander S. Motor learning in man: Apositron emissiontomographic study. Neuroreport 1:57-66, 1990.

Seitz RJ e Roland PE. Learning of sequencial finger movements in man: a combined kinematic and positron emission tomographic (PET) study. Europ J Neurosc, 4:154-65, 1992.

Passingham RE. Attention to action. Philos Trans R Soc Lond B Biol. Sci, 351:1473-9, 1996.

Pascual-Leone A, Wassermann EM, Grafman J, Hallett M. The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res, 107:479-85, 1996.

Grafton ST, Fagg AH, Arbib MA. Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. J Neurophysiol, 79:1092-7, 1998.

Grafton ST, Mazziotta JC, Presty S, Friston KJ, Phelps ME. Functional anatomy of human procedural learning determined with regional cerebral flow and Pet. J Neuroscience, 12:2542-8, 1992.

Donoghue JP e Sanes JN. Motor areas of cerebral cortex. J. Clin Neurophysiol, 11:382-96, 1994.

Kaneko T, Caria MA, Asanuma H. Information processing within the motor cortex. I. Responses of morphologically identified motor cortical cells to stimulation of the somatosensory cortex. J Comp Neurol, 345: 161-71, 1994.

Asasuma H e Pavlides C. Neurobiological basis motor learning in mammals. Neuroreport, 8(4): i-vi, 1997.

Schadmehr R e Holcomb HH. Neural correlayes of motor memory consolidation. Science, 277:821-5, 1997.

Halsband U e Freund HJ. Premotor cortex and conditional motor learning in man. Brain, 113:207-22, 1990.

Marr D. A theory of cerebelar cortex. J Physiol (Lond), 202:437-71, 1969.

Albus JS. A theory of cerebellar function. Math Biosci, 10:25-61, 1971.

Sanes JN, Dimitrov B, Hallett JP. Motor learning in patients with cerebellar dysfunction. Brain, 113:103-20, 1990.

Raymond JL, Liesberger SG, Mauk MD. The cerebellum: a neuronal learning machine? Res Q Exerc Sport, 67:280-7, 1996.

Paulim MG. Neural representation of moving systems. Int Ver Neurobiol, 41:515-33, 1997.

Thompson JK, Tracy JA, Weinger MS, Krupa DJ. Associative Learning. Int Rev Neurobiol, 41:151-89, 1997.

Doyon J. Skill learning. Int Rev Neurobiol, 41:273-94, 1997.

Kleim JA, Vij K, Ballard DH, Greenough WT. Learningdependet synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J Neurosci, 17:717-21, 1997.

Harvey JA, Welsh JP, Thach TW. Learning and performance: A critical review of the role of the cerebellum in instrumental and classical conditioning. In: Bloedel JR, Ebner TJ, Wise SP. The acquisition of motor behavior in vertebrates. Massachusetts, Bradford, 1996, pp. 439.

Thach TW. A cerebelar role in the acquisition of novel static and dynamic muscle activities in the holding, pointing, throwing and reaching. In: Bloedel JR, Ebner TJ, Wise SP (ed). The acquisition of motor behavior in vertebrates. Massachusetts, Bradford, 1996, pp. 223-34, pp. 439.

Kimura M. Role of basal ganglia in behaviral learning. Neurosc Res, 22:353-8, 1995.

Schumway-Cook A e Woolacott M. Motor control – theory and practical applications. Williams & Wilkins, 1995.

Lippman LG e Rees R. Consequences of error production in a perceptual-motor task. J Gen Psychol, 124:133-42, 1997.

Kandel ER e Hawtkins RS. The biological basis of learning and individuality. Sci Am. 267:78-86, 1992.

Goelet P, Castellucci VF, Schacher S. Kandel ER. The long and the short of long-term memory – a molecular framework. Nature, 322:419-22, 1986.

Zigmound MJ, Bloom FE, Landis SC, Roberts JL, Squire LR. Fundamental neuroscience. Academic Press, San Diego, 1999.

Zalutskt RA e Nicoll RA. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science, 248:1619-24, 1990.

Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D. Topographic reorganization of somatosensory cortical areas 3B and 1 in adult monkeys following restricted deaferentiation. Neuroscience, 8:33-55, 1983.

Pascual-Leone A, Hallet M, Sadato N, Wassermann EM. The role of reading activity on the modulation of motor cortical outputs to the reading hand in Braille eaders. Ann Neurol 38:10-915, 1995b.

Pascual-Leone A, Hallet M, Cammarota A, Brasil-Neto JP, Cohen LG, Nguyet D. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol, 74:1037-45, 1995a.

Kaas JH. The reorganization of sensory and motor maps in adult mammals. In: Gazzaniga MS (ed). The cognitive neuroscience. cap. 4, Massachusetts, Institute of Tecnology, 1996, pp. 51-65.

Marshall JF. Brain function: neural adaptations and recovery from injury. Annual Review of Psychology, 35277-308, 1984.

Cotman CW, Niete-Sampedro M, Harris, EW. Synapse replacement in the central nervous system of adult vertebrates. Physiological Reviews, 61:684-784, 1981.

Cotman CW e Lynch GS. The neurobiology of learning and memory. Cognition, 33:201-41, 1989.

Flohr H, Luneburg U. Effects of ACTH4-10 on vestibular compensation. Brain Research, 248:169-73, 1982.

Darlington CL, Flohr H, Smith PF. Molecular mechanisms of brainstem plasticity. The vestibular compensation model. Molecular Neurobiology, 5:355-68, 1991.

Mattioli R, Shwarting RKW, Huston JP. Recovery from unilateral 6-hydroxydopamina lesion of substantia nigra promoted by the neurotachynin substance P. Neuroscience, 48:595-605, 1992.

Freund HJ, Sabel BA, Witte OW. Advances in neurology – brain plasticity. Philadelphia, Lippincott-Raven, 1997, p. 409.

Downloads

Publicado

2001-09-30

Como Citar

Sá, C. S., & Medalha, C. C. (2001). Aprendizagem e Memória: Contexto Motor. Revista Neurociências, 9(3), 103–110. https://doi.org/10.34024/rnc.2001.v9.8913

Edição

Seção

Artigos Originais
Recebido: 2019-02-02
Publicado: 2001-09-30

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.