Ataxias espinocerebelares causadas por expansão de poliglutamina

uma revisão

Autores

  • Alexis Trott Biólogo Geneticista, Doutor em Bioquímica - Genética Médica pela UFRGS/HCPA, Mestre em Genética e Biologia Molecular (UFRGS), Professor Titular, Coordenador de Ciências Biológicas e da Especialização em Genética Médica da UNOESC, Santa Catarina, São Miguel do Oeste-SC, Brasil
  • Angelica Francesca Maris Bióloga Geneticista, Doutora em Genética e Biologia Molecular pela UFRGS, Pós-Doutora pela J.W-Goethe Universitaet Frankfurt am Main, Alemanha, Professora Titular na Medicina da UNOESC, Santa Catarina, Pesquisadora colaboradora da UFSC, São Miguel do Oeste-SC, Brasil
  • Gustavo Borba de Miranda Biologista, Pós-Doutor em Genética e Biologia Molecular pela UFRGS, Professor Titular da UNOESC, Santa Catarina, São Miguel do Oeste-SC, Brasil.

DOI:

https://doi.org/10.34024/rnc.2010.v18.8441

Palavras-chave:

Ataxia Cerebelar, Cerebelo, Genética, Glutamina, Repetições de Trinucleotídeos

Resumo

Introdução. As ataxias espinocerebelares dominantes (SCAs), do inglês spinocerebellar ataxia, são um complexo grupo de doenças neurodegenerativas que afetam o cerebelo e suas principais conexões. O início das SCAs ocorre geralmente na vida adulta, apresentando grande heterogeneidade clínica. Os sintomas normalmente aparecem da terceira a quarta década de vida com progressão lenta. Objetivo. Revisar as SCAs em seus aspectos clínicos, epidemiológicos e moleculares, da principal categoria de ataxias: ataxias espinocerebelares por expansão de poliglutamina na proteína que leva à doença, causada pelo aumento do número de repetições do trinucleotídeo CAG na região codificante dos genes envolvidos. Método. Estudo de revisão bibliográfica nas bases de dados Medline e PubMed. Resultados. Recentemente, muito foi descoberto sobre as SCAs, com um aumento substancial no número de loci envolvidos. É estimado que os testes genéticos levem à identificação do gene mutado em muitos casos de ataxia. Os mecanismos patogênicos destas desordens envolvem, basicamente, perda ou ganho de função das proteínas envolvidas. Conclusão. Nosso conhecimento dos mescanismos moleculares das SCAs está crescendo rapidamente, e as importantes pesquisas trazem esperança para efetivas terapias em humanos.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Zoghbi HY, Orr HT. Spinocerebellar Ataxias, In: Scriver CR, Beaudet AL, Valle D, Sly WS, (eds). The metabolic and molecular bases of inherited disease. 8ª. ed. New York, McGraw-Hill, 2001, p.5741-58.

Koob MD, Moseley ML, Schut LJ, Benzow K, Bird TD, Day JW, et al.An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Natura Genet 1999;21:379-84.

Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 2005;4:2-6.

Jardim LB. Aspecto clínicos e moleculares da doença de Machado-Joseph no Rio Grande do Sul. (Tese). Porto Alegre. Universidade Federal do Rio Grande do Sul, 2000, 317p.

Harding AE. The hereditary ataxias and related disorders. Edinburgh: Churchill Livingstone, 1984, 266p.

Trott A. Análise Molecular e Clínica das Ataxias Espinocerebelares. Universidade Federal do Rio Grande do Sul, 2007, 105p.

Stevanin G, Durr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 2000;8:4-18.

Trott A, Jardim LB, Ludwig HT, Saute JAM, Artigalas O, Kieling C, et al. Spinocerebellar ataxias in 114 Brazilian families: clinical and molecular findings. Clin Genet 2006;70:173-6.

Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nature Genet 2005;6:743-55.

Soong B, Paulson HL. Spinocerebellar ataxias: an update. Current Opinion in Neurology 2007;20:438-46.

Paulson HL. Dominantly Inherited Ataxias: Lessons Learned from Machado-Joseph Disease/Spinocerebellar Ataxia Type 3. Seminars in Neurology 2007;27:133-42.

Warrick J, Paulson H, Gray-Board G, Bui Q, Fischbeck K, Pittman R, et al. Expanded Polyglutamine Protein Forms Nuclear Inclusions and Causes Neural Degeneration in Drosophila. Cell 1998;93:939-49.

Young JE, Gouw L, Propp S, Sopher BL, Taylor J, Lin A, et al. Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. J Biol Chem 2007;282:30150-60.

Marsh JL, Walker H, Theisen H, Zhu YZ, Fielder T, Purcell J, et al. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet 2000;1:13-25.

Yamada M, SatoT, Tsuji S, Takahashi H. CAG repeat disorder models and human neuropathology: similarities and differences. Acta Neurophatol 2008;115:71-86.

Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 2007;16:115-23.

Okazawa H. Polyglutamine diseases: a transcription disorder? CellMol Life Sci 2003;60:1427-39.

Luthi-Carter R, Hanson SA, Strand AD, Bergstrom DA, Chun W, Peters NL, et al. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brai. Hum Mol Genet 2002;11:1911-26.

Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 1997;19:333-44.

Einum DD, Townsend JJ, Ptácek LJ, Fu YH. Ataxin-7 expression analysis in controls and spinocerebellar ataxia type 7 patients. Neurogenetics 2001;3:83-90.

Nagaoka U, Uchihara T, Iwabuchi K, Konno H, Tobita M, Funata N, et al. Attenuated nuclear shrinkage in neurones with nuclear inclusions of SCA1 brains. J Neurol Neurosurg Psychiatry 2003;74:597-601.

Zoghbi HY. Spinocerebellar ataxia type 1. Clin Neurosci 1995;3:5-11.

Zuhlke C, Dalski A, Hellenbroich Y, Bubel S, Schwinger E, Burk K. Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur J Hum Genet 2002;10:204-9.

Matilla-Dueñas A, Goold R, Giunti P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum 2008;7:106-14.

Cummings CJ, Orr HT, Zoghbi HY. Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos Trans R Soc Lond B Biol Sci 1999;354:1079-81.

Ranum LP, Chung MY, Banfi S, Bryer A, Schut LJ, Ramesar R, et al. Molecular and clinical correlations in spinocerebellar ataxia type 1: evidence for familial effects on the age at onset. Am J Hum Genet 1994;55:244-52.

Silveira I, Lopes-Cendes I, Kish S, Maciel P, Gaspar C, Coutinho P, et al. Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neorology 1996;46:214-8.

Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen J, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol 1997;42:924-32.

Sasaki H, Yabe I, Tashiro K. The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res 2003;100: 198-205.

Kraft S, Furtado S, Ranawaya R, Parboosingh J, Bleoo S, McElligott K. Adult onset spinocerebellar ataxia in a Canadian movement disorders clinic. Can J Neurol Sci 2005;32:450-8.

Koefoed P, Hasholt L, Fenger K, Nielsen JE, Eiberg H, Buschard K, et al. Mitotic and meiotic instability of the CAG trinucleotide repeat in spinocerebellar ataxia type 1. Hum Genet 1998;103:564-9.

Kim SJ, Kim TS, Kim IY, Hong S, Rhim H, Kang S. Polyglutamineexpanded ataxin-1 recruits Cu/Zn-superoxide dismutase into the nucleus of HeLa cells. Biochem Biophys Res Commun 2003;307:660-5.

Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, et al. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell2003; 113: 457-68.

Orr HT, Zoghbi HY. SCA1 molecular genetics: a history of a 13 year collaboration against glutamines. Hum Mol Genet 2001;10:2307-11.

Kang S, Hong S. Molecular pathogenesis of Spinocerebellar Ataxia type 1 disease. Mol Cells 2009;27:621-7.

Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 2001;10:1511-8.

Klockgether T, Wullner U, Spauschus A, Evert B. The molecular biology of the autosomal-dominant cerebellar ataxias. Mov Disord 2000;15:604-12.

Yue S, Serra HG, Zoghbi HY, Orr HT. The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet 2001;10:25-30.

Zoghbi HY, Orr HT. Pathogenic Mechanisms of a Polyglutamine-mediated Neurodegenerative Disease, Spinocerebellar Ataxia Type 1. J Biol Chem 2009;284:7425-9.

Orozco Diaz G, Nodarse Fleites A, Cordovés Sagaz R, Augurger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguín, Cuba. Neurology 1990;40:1369-75.

Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L, et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to human chromosome 12q23-24.1. Nature Genet 1993; 4:295-9.

Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen X-N, LopesCendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996;14:269-76.

Kakizuka A. Protein precipitation: a common etiology in neurodegenerative disorders? Trend Gen 1998;14: 396-402.

Fernandez M, McClain ME, Martinez RA, Snow K, Lipe H, Ravits J, et al. Late-onset SCA2: 33 CAG repeats are sufficient to cause disease. Neurology 2000;55:569-72.

Choudhry S, Mukerji M, Srivastava AK, Jain S, Brahmachari SK. CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum Mol Genet 2001;10:2437-46.

Moretti P, Blazo M, Garcia L, Armstrong D, Lewis RA, Roa B, et al. Spinocerebellar ataxia type 2 (SCA2) presenting with ophthalmoplegia and developmental delay in infancy. Am J Med Genet 2004;124:392-6.

Lastres-Becker I, Rüb U, Auburger G. Spinocerebellar ataxia 2 (SCA2). The Cerebellum 2008;7:115-24.

Mao R, Aylsworth AS, Potter N, Wilson WG, Breningstall G, Wick MJ, et al. Childhood-onset ataxia: testing for large CAG-repeats in SCA2 and SCA7. Am J Med Genet 2002;110:338-45.

Matsuura T, Sasaki H, Yabe I, Hamada K, Hamada T, Shitara M, et al. Mosaicism of unstable CAG repeats in the brain of spinocerebellar ataxia type 2. J Neurol 1999;246:835-9.

Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst S. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet 1997;60:842-50.

Sinha KK, Worth PF, Jha DK, Sinha S, Stinton VJ, Davis MB, et al. Autosomal dominant cerebellar ataxia: SCA2 is the most frequent mutation in eastern India. J Neurol Neurosurg Psychiatry 2004;75:448-52.

Cellini E, Forleo P, Nacmias B, Tedde A, Latorraca S, Piacentini S, et al. Clinical and genetic analysis of hereditary and sporadic ataxia in central Italy. Brain Res Bull 2001;56:363-6.

Pang JT, Giunti P, Chamberlain S, An SF, Vitaliani R, Scaravilli T, et al. Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two cases. Brain 2002;125:656-63.

Takahashi J, Fujigasaki H, Iwabuchi K, Bruni AC, Uchihara T, El Hachimi KH, et al. PML nuclear bodies and neuronal intranuclear inclusion in polyglutamine diseases. Neurobiol Dis 2003;13:230-7.

Huynh DP, Yang HT, Vakharia H, Nguyen D, Pulst SM. Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet 2003;12:1485-96.

Wiedemeyer R, Westermann F, Wittke I, Nowock J, Schwab M. Ataxin-2 promotes apoptosis of human neuroblastoma cells. Oncogene 2003;22:401-11.

Jardim LB, Silveira I, Pereira ML, Ferro A, Alonso I, do Ceu Moreira M, et al. A survey of spinocerebellar ataxia in South Brazil - 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol 2001;248:870-6.

Rolim L, Leite A, Lêdo S, Paneque M, Sequeiros J, Fleming M. Psychological aspects of pre-symptomatic testing for Machado-Joseph disease and familial amyloid polyneuropathy type I. Clin Genet 2006;69:297-305.

Jia D, Jian H, Tang B. Recent advances in molecular genetics of spinocerebellar ataxia type 3/Machado-Joseph disease.Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2008;25:660-2.

Sequeiros J, Coutinho P. Epidemiology and clinical aspects of MachadoJoseph disease. In: Harding A, Deufel T, Chamberlain S (eds) Advances in neurology. Raven Press, New York; 1993, p.139-53.

Lokkegaard T, Nielsen JE, Hasholt L, Fenger K, Werdelin L, Tranebjaerg L, et al. Machado-Joseph disease in three Scandinavian families. J Neurol Sci 1998;156:152-7.

Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Machado-Joseph disease in South Brazil: clinical and molecular characterization of kindreds. Acta Neurol Scand 2001;104:224-31.

Schmitt I, Evert BO, Khazneh H, Klockgether T, Wuellner U. The human MJD gene: genomic structure and functional characterization of the promoter region. Gene 2003;314:81-8.

Gaspar C, Lopes-Cendes I, Hayes S, Goto J, Arvidsson K, Dias A, et al. Ancestral Origins of the Machado-Joseph Disease Mutation: A Worldwide Haplotype Study. Am J Hum Genet 2001;68:523-8.

Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, et al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nature Genet 1993;4:300-3.

Sequeiros J, Silveira I, Maciel P, Coutinho P, Manaia A, Gaspar C, et al. Genetic linkage studies of Machado-Joseph disease with chromosome 14q STRPs in 16 Portuguese-Azorean kindreds. Genomics 1994;21:645-8.

Twist EC, Casaubon LK, Ruttledge MH, Rao VS, Macleod PM, Radvany J, et al. Machado Joseph disease maps to the same region of chromosome 14 as the spinocerebellar ataxia type 3 locus. J Med Genet 1995;32:25-31.

Stevanin G, Le Guern E, Ravise N, Chneiweiss H, Durr A, Cancel G, et al. A third locus for autosomal dominant cerebellar ataxia type I maps to chromosome 14q24.3-qter: evidence for the existence of a fourth locus. Am J Hum Genet 1994;54:11-20.

Schöls L, Vieira-Saecker AM, Schols S, Przuntek H, Epplen JT, Riess O. Trinucleotide expansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Hum Mol Genet. 1995;4:1001-5.

Riess O, Rüb U, Pastore A, Bauer P, Schöls L. SCA3: neurological features, pathogenesis and animal models. Cerebellum 2008;7:125-37.

Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Neurologic findings in Machado-Joseph disease. Arch Neurol 2001;58:899-904.

Van Alfen N, Sinke RJ, Zwarts MJ, Gabreels-Festen A, Praamstra P, Kremer BP, et al. Intermediate CAG repeat lengths (53,54) for MJD/SCA3 are associated with an abnormal phenotype. Ann Neurol 2001;49:805-7.

Yoshida H, Yoshizawa T, Shibasaki F, Shoji S, Kanazawa I. Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 2002;10:88-99.

Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol 2003;23:6469-83.

Scheel H, Tomiuk S, Hofmann K. Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum Mol Genet 2003;12:2845-52.

Tarlac V, Storey E. Role of proteolysis in polyglutamine disorders. J Neurosci Res 2003;74:406-16.

Chang WH, Cemal CK, Hsu YH, Kuo CL, Nukina N, Chang MH, et al. Dynamic expression of Hsp27 in the presence of mutant ataxin-3. Biochem Biophys Res Commun 2005;336:258-67.

Restituito S, Thompson RM, Eliet J, Raike RS, Riedl M, Charnet P, et al. The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 2000;20:6394-403.

Soong B, Liu R, Wu L, Lu Y, Lee H. Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol 2001;58:300-4.

Kordasiewicz HB, Gomez CM. Molecular pathogenesis of spinocerebellar ataxia type 6. Neurotherapeutics 2007;4:285-94.

Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K, et al. A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4- qter. Ann Neurol 2000;48:156-63.

Komeichi K, Sasaki H, Yabe I, Yamashita I, Kikuchi S, Tashiro K. Twenty CAG repeats are sufficient to cause the SCA6 phenotype. J Med Genet 2001;38:e38.

Mariotti C, Gellera C, Grisoli M, Mineri R, Castucci A, Di Donato S. Pathogenic effect of an intermediate-size SCA-6 allele (CAG)(19) in a homozygous patient. Neurology 2001;57:1502-4.

Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton D, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the 1A-voltage-dependent calcium channel. Nature Genetics 1997;15:62-8.

Shimazaki H, Takiyama Y, Sakoe K, Amaike M, Nagaki H, Namekawa M, et al. Meiotic instability of the CAG repeats in the SCA6/CACNA1A gene in two Japanese SCA6 families. J Neurol Sci 2001;185:101-7.

Ophoff RA, Terwin DT, Vergouwe MN, Vaneijk R, Oefner PJ, Hoffmans MG, et al. Familial hemiplegil migraine and episodil ataxia type 2 are caused by mutations in the Ca 2+ channel gene CACNA1A. Cell 1996;87:543-52.

Alonso I, Barros J, Tuna A, Coelho J, Sequeiros J, Silveira I, et al. Phenotypes of spinocerebellar ataxia type 6 and familial hemiplegic migraine caused by a unique CACNA1A missense mutation in patients from a large family. Arch Neurol 2003;60:610-4.

Mantuano E, Veneziano L, Jodice C, Frontali M. Spinocerebellar ataxia type 6 and episodic ataxia type 2: differences and similarities between two allelic disorders. Cytogenet Genome Res 2003;100:147-53.

Ichikawa K, Owada K, Ishida K, Fujigasaki H, Shun Li M, Tsunemi T, et al. Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells. Neurology 2001;56:1753-6.

Frontali M. Spinocerebellar ataxia type 6: channelopathy or glutamine repeat disorder? Brain Res Bull 2001; 56:227-31.

Lebre AS, Brice A. Spinocerebellar ataxia 7 (SCA7). Cytogenet Genome Res 2003;100:154-63.

Garden GA, La Spada AR. Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 2008;7:138-49.

David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, et al. Cloningthe SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997;17:65-70.

Stevanin G, David G, Abbas N, Dürr A, Holmberg M, Duyckaerts C, et al. Spinocerebellar ataxia type 7 (SCA7). In: Rubinsztein DC and Hayden MR, Editores. Analysis of triplet repeat disorders. Oxford: BIOS Scientific Publishers; 1998, p.155-68.

Bryer A, Krause A, Bill P, Davids V, Bryant D, Butler J, et al. The hereditary adult-onset ataxias in South Africa. J Neurol Sci 2003;216:47-54.

Helmlinger D, Abou-Sleymane G, Yvert G, Rousseau S, Weber C, Trottier Y, et al. Disease progression despite early loss of polyglutamine protein expression in SCA7 mouse model. J Neurosci 2004;24:1881-7.

Scholefield J, Greenberg LJ, Weinberg MS, Arbuthnot PB, Abdelgany A, Wood MJ. Design of RNAi hairpins for mutation-specific silencing of ataxin-7 and correction of a SCA7 phenotype. PloS One 2009;4:e7232.

Sequeiros J. Genética clássica e genética molecular da doença de Machado Joseph. In: Sequeiros J, editor. O teste preditivo da doença de MachadoJoseph. Porto: UnIGENe, IBMC; 1996, p.33-48.

Downloads

Publicado

2010-12-31

Como Citar

Trott, A., Maris, A. F., & de Miranda, G. B. (2010). Ataxias espinocerebelares causadas por expansão de poliglutamina: uma revisão. Revista Neurociências, 18(4), 512–522. https://doi.org/10.34024/rnc.2010.v18.8441

Edição

Seção

Revisão de Literatura
Recebido: 2019-02-20
Publicado: 2010-12-31