Processo Inflamatório e Neuroimunomodulação na Doença de Alzheimer

Revisão de Literatura

  • Natália Pessoa Rocha Farmacêutica, mestranda em neurociências na UFMG, Belo HorizonteMG, Brasil.
  • Luiza da Conceição Amorim Martins Biomédica, mestranda em neurociências na UFMG, Belo HorizonteMG, Brasil
  • Antônio Lúcio Teixeira Neurologista e Psiquiatra, Doutor em Biologia Celular pela UFMG, professor de neurologia da Faculdade de Medicina da UFMG, Belo HorizonteMG, Brasil.
  • Helton José Reis Biólogo, Doutor em Farmacologia pela UFMG, professor de neurofarmacologia do Instituto de Ciências Biológicas da UFMG, Belo Horizonte-MG, Brasil
Palavras-chave: Doença de Alzheimer, Inflamação, Imunologia, Citocinas, Quimiocinas

Resumo

Objetivo. Revisar o papel dos diferentes mecanismos inflamatórios e neuroimunomodulação na Doença de Alzheimer (DA). Método. Trata-se de revisão narrativa em que foram feitas buscas na base de dados do PubMed e em revistas indexadas do Portal Periódicos da Capes. Resultados. Foram encontrados vários estudos sobre o envolvimento do processo inflamatório e/ou de seus componentes na DA. As evidências da participação do processo inflamatório / imunológico na fisiopatologia da DA incluem: 1) associação entre o uso crônico de fármacos anti-inflamatórios não-esteróides (FAINES) e risco reduzido de desenvolver DA; 2) Exames post mortem em cérebros com DA revelaram a presença abundante de mediadores inflamatórios, número aumentado microglia dentro de placas neuríticas, além da presença de linfócitos e monócitos infiltrados; e 3) Análises do líquor, soro e de produtos secretados por células periféricas mononucleares revelaram aumento nos níveis de citocinas, quimiocinas e de outros mediadores inflamatórios nos pacientes com DA. Conclusão. São fortes as evidências sobre o envolvimento de processos inflamatórios na patogênese da DA.

Métricas

Carregando métricas...

Referências

Alzheimer’s Association. 2009 Alzheimer’s disease facts and figures. Alzheimers Dement 2009;5:234-70. http://dx.doi.org/10.1016/j.jalz.2009.03.001

Vas CJ, Rajkumar S, Tanyakitpisal P, Chandra V. Alzheimer´s disease: The Brain Killer (Endereço na Internet). South-East Asia: World Health Organization – WHO, Regional Office for South-East Asia; 2001. (atualizado em: 08/2006; acessado em: 12/2008). Disponível em: http://www.searo.who.int/en/Section1174/Section1199/Section1567/Section1823_8066.htm.

Nitrini R, Bottino CM, Albala C, Custodio Capuñay NS, Ketzoian C, Llibre Rodriguez JJ, et al. Prevalence of dementia in Latin America: a collaborative study of population-based cohorts. Int Psychogeriatr 2009;21:622-30. http://dx.doi.org/10.1017/S1041610209009430

Herrera E Jr, Caramelli P, Silveira AS, Nitrini R. Epidemiologic survey of dementia in a community-dwelling Brazilian population. Alzheimer Dis Assoc Disord 2002;16:103-8. http://dx.doi.org/10.1097/0000209320020400000007

Bottino CM, Azevedo D Jr, Tatsch M, Hototian SR, Moscoso MA, Folquitto J, et al. Estimate of dementia prevalence in a community sample from São Paulo, Brazil. Dement Geriatr Cogn Disord 2008;26:291-9. http://dx.doi.org/10.1159/000161053

Sjögren M, Andreasen N, Blennow K. Advances in the detection of Alzheimer’s disease – use of cerebrospinal fluid biomarkers. Clin Chim Acta 2003;332:1-10. http://dx.doi.org/10.1016/S0009-8981(03)00121-9

Neuroinflammation Working Group. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000;21:383-421.

Sereniki A, Vital MABF. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Rev Psiquiatr RS (online) 2008;30(1 Supl): http://www.scielo.br/pdf/rprs/v30n1s0/v30n1a02s0.pdf

McGeer EG, Yasojima K, Schwab C, McGeer PL. The pentraxins: possible role in Alzheimer’s disease and other innate inflammatory diseases. Neurobiol Aging 2001;22:843–8. http://dx.doi.org/10.1016/S0197-4580(01)00288-3

Craft JM, Watterson DM, Van Eldik LJ. Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia 2006;53:484-90. http://dx.doi.org/10.1002/glia.20306

Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, et al. Microglial activation resulting from CD40-CD40L interaction after b-amyloid. Science 1999;286:2352-5. http://dx.doi.org/10.1126/science.286.5448.2352

Moore AH, O’Banion MK. Neuroinflammation and anti-inflammatory therapy for Alzheimer’s disease. Adv Drug Deliv Rev 2002;54:1627-56. http://dx.doi.org/10.1016/S0169-409X(02)00162-X

Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ. The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 2006;113:1685-95. http://dx.doi.org/10.1007/s00702-006-0575-6

Manzano S, González JL, Marcos A, Matías-Guiu J. Genética y enfermedad de Alzheimer Neurol 2009;24:83-9.

Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353-6. http://dx.doi.org/10.1126/science.1072994

Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, et al. Amyloid Precursor Protein Regulates Brain Apolipoprotein E and Cholesterol Metabolism through Lipoprotein Receptor LRP1. Neuron 2007;56:66-78. http://dx.doi.org/10.1016/j.neuron.2007.08.008

Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 2009;15:112-9. http://dx.doi.org/10.1016/j.molmed.2009.01.003

Teixeira AL, Bauer ME, Nicolato R, Reis HJ, Palotás A. Cytokines and the brain: Beyond immune response. In: Fedorovich SV, editor. Signal Transduction in Nervous Cells. Trivandrum: Research Signpost, 2008, p.95-115.

Richartz-Salzburger E, Batra A, Stransky E, Laske C, Köhler N, Bartels M, et al. Altered lymphocyte distribution in Alzheimer’s disease. J Psychiatr Res 2007;41:174-8.

Xue SR, Xu DH, Yang XX, Dong WL. Alterations in lymphocyte subset patterns and co-stimulatory molecules in patients with Alzheimer disease. Chin Med J (Engl). 2009;122:1469-72.

Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, et al. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 2007;188:117-27. http://dx.doi.org/10.1016/j.jneuroim.2007.05.011

Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 2009;87:181-94. http://dx.doi.org/10.1016/j.pneurobio.2009.01.001

Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, et al. The Metabolic Syndrome, Inflammation, and Risk of Cognitive Decline. JAMA. 2004;292:2237-42. http://dx.doi.org/10.1001/jama.292.18.2237

Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009;73:768-74. http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95

Rojo LE, Fernández JA, Maccioni AA, Jimenez JM, Maccioni RB. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res 2008;39:1-16. http://dx.doi.org/10.1016/j.arcmed.2007.10.001

Wyss-Coray T. Inflammation in Alzheimer’s disease: driving force, bystander or beneficial response? Nat Med 2006;12:1005-15.

Streit WJ, Conde JR, Harrison JK. Chemokines and Alzheimer’s disease. Neurobiol Aging 2001;22:909-13. http://dx.doi.org/10.1016/S0197-4580(01)00290-1

Teixeira AL, Reis HJ, Coelho FM, Carneiro DS, Teixeira MM, Vieira LB, et al. All-or-nothing type biphasic cytokine production of human lymphocytes after exposure to alzheimer’s beta-amyloid peptide. Biol Psychiatr 2008; 64:891-5. http://dx.doi.org/10.1016/j.biopsych.2008.07.019

Schwarz MJ, Chiang S, Müller N, Ackenheil M. T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 2001;15:340-70. http://dx.doi.org/10.1006/brbi.2001.0647

Bongioanni P, Romano MR, Sposito R, Castagna M, Boccardi B, Borgna M. T-cell tumour necrosis factor-alpha receptor binding in demented patients. J Neurol 1997;244:418-25. http://dx.doi.org/10.1007/s004150050115

Tarkowski E, Blennow K, Wallin A, Tarkowski A. Intracerebral produc-tion of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol.1999;19:223-30. http://dx.doi.org/10.1023/A:1020568013953

Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhøj P, Pedersen BK. A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 1999;54: M357-64. http://dx.doi.org/10.1093/gerona/54.7.M357

Engelborghs S, De Brabander M, De Crée J, D’Hooge R, Geerts H, Verhaegen H, et al. Unchanged levels of interleukins, neopterin, interferongamma and tumor necrosisfactor-alpha in cerebrospinal fluid of patients with dementia of the Alzheimer type. Neurochem Int 1999;34:523-30. http://dx.doi.org/10.1016/S0197-0186(99)000315

Szczepanik AM, Funes S, Petko W, Ringheim GE. IL-4, IL-10 and IL-13 modulate A beta(1–42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J Neuroimmunol 2001; 113:49-62. http://dx.doi.org/10.1016/S0165-5728(00)00404-5

Bongioanni P, Boccardi B, Borgna M, Rossi B. T-lymphocyte interleukin 6 receptor binding in patients with dementia of Alzheimer type. Arch Neurol 1998;55:1305-8. http://dx.doi.org/10.1001/archneur.55.10.1305

Singh VK, Guthikonda P. Circulating cytokines in Alzheimer’s disease. J Psychiatr Res. 1997;31:657-60. http://dx.doi.org/10.1016/S0022-3956(97)00023-X

Song DK, Im YB, Jung JS, Cho J, Suh HW, Kim YH. Central betaamyloid peptide-induced peripheral interleukin-6 response in mice. J Neurochem 2001;76:1326-35. http://dx.doi.org/10.1046/j.1471-4159.2001.00121.x

Kálmán J, Juhász A, Laird G, Dickens P, Járdánházy T, Rimanóczy A, et al. Serum interleukin-6 levels correlate with the severity of dementia in Down syndrome and in Alzheimer’s disease. Acta Neurol Scand 1997;96:236-40.

Martínez M, Fernández-Vivancos E, Frank A, De la Fuente M, Hernanz A. Increased cerebrospinal fluid fas (Apo-1) levels in Alzheimer’s disease. Relationship with IL-6 concentrations. Brain Res 2000;869:216-9. http://dx.doi.org/10.1016/S0006-8993(00)02363-5

Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995; 202:17-20.

Yamada K, Kono K, Umegaki H, Yamada K, Iguchi A, Fukatsu T, et al. Decreased interleukin-6 level in the cerebrospinal fluid of patients with Alzheimer-type dementia. Neurosci Lett 1995;186:219-21. http://dx.doi.org/10.1016/0304-3940(95)11318-Q

März P, Heese K, Hock C, Golombowski S, Müller-Spahn F, Rose-John S, et al. Interleukin-6 (IL-6) and soluble forms of IL-6 receptors are not altered in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 1997; 239:29-32.

Bacon KB, Harrison JK. Chemokines and their receptors in neurobiology: perspectives in physiology and homeostasis. J Neuroimmunol 2000;104:92-7. http://dx.doi.org/10.1016/S0165-5728(99)00266-0

Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, et al. Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol 1997;158:2882-90.

Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci 1997;51:135-8. http://dx.doi.org/10.1111/j.1440-1819.1997.tb02375.x

Mennicken F, Maki R, de Souza EB, Quirion R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci 1999;20:73-8. http://dx.doi.org/10.1016/S01656147(99)01308-5

Araujo DM, Cotman CW. Trophic effects of interleukin-4, -7 and -8 on hippocampal neuronal cultures: potential involvement of glial-derived factors. Brain Res 1993;600:49-55. http://dx.doi.org/10.1016/00068993(93)90400-H

Meda L, Bonaiuto C, Szendrei GI, Ceska M, Rossi F, Cassatella MA. beta-Amyloid(25-35) induces the production of interleukin-8 from human monocytes. J Neuroimmunol 1995;59:29-33. http://dx.doi.org/10.1016/01655728(95)00021-S

Mattson MP, Meffert MK. Roles for NFkB in nerve cell survival, plasticity, and disease. Cell Death Differ 2006; 13:852-60. http://dx.doi.org/10.1038/sj.cdd.4401837

Barnum SR. Complement biosynthesis in the central nervous system. Crit Rev Oral Biol Med 1995;6:132-46. http://dx.doi.org/10.1177/10454411950060020301

Morgan BP, Gasque P. Expression of complement in the brain: role in health and disease. Immunol Today. 1996;17:461-6. http://dx.doi.org/10.1016/0167-5699(96)20028-F

Emmerling MR, Watson MD, Raby CA, Spiegel K. The role of complement in Alzheimer’s disease pathology. Biochim Biophys Acta 2000;1502:158-71.

Tenner AJ. Complement in Alzheimer’s disease: opportunities for modulating protective and pathological events. Neurobiol Aging 2001;22:849-61. http://dx.doi.org/10.1016/S0197-4580(01)00301-3

Zanjani H, Finch CE, Kemper C, Atkinson J, McKeel D, Morris JC, et al. Complement activation in very early Alzheimer disease. Alzheimer Dis Assoc Disord 2005;19:55-66. http://dx.doi.org/10.1097/01.wad.0000165506.60370.94

Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ. Localization and cell association of C1q in Alzheimer’s disease brain. Exp Neurol 1996;138:22-32. http://dx.doi.org/10.1006/exnr.1996.0043

Webster S, Lue LF, Brachova L, Tenner AJ, McGeer PL, Terai K, et al. Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging 1997;18:415-21. http://dx.doi.org/10.1016/S0197-4580(97)00042-0

Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1992;89:10016-20. http://dx.doi.org/10.1073/pnas.89.21.10016

McGeer PL, McGeer EG. The possible role of complement activation in Alzheimer disease. Trends Mol Med 2002;8:519-23. http://dx.doi.org/10.1016/S1471-4914(02)02422-X

Yasojima K, Schwab C, McGeer EG, McGeer PL. Up-regulated production and activation of the complement system in Alzheimer’s disease brain. Am J Pathol 1999;154:927-36. http://dx.doi.org/10.1016/S00029440(10)65340-0

Yasojima K, McGeer EG, McGeer PL. Complement regulators C1 inhibitor and CD59 do not significantly inhibit complement activation in Alzheimer disease. Brain Res 1999;833:297-301. http://dx.doi.org/10.1016/S00068993(99)01514-0

Ghai R, Waters P, Roumenina LT, Gadjeva M, Kojouharova MS, Reid KB, et al. C1q and its growing family. Immunobiology 2007;212:253-66. http://dx.doi.org/10.1016/j.imbio.2006.11.001

Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 2002;99:10837-42. http://dx.doi.org/10.1073/pnas.162350199

Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA. Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci 2008;28:6333-41. http://dx.doi.org/10.1523/JNEUROSCI.0829-08.2008

Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007;89:1089-106. http://dx.doi.org/10.1016/j.biochi.2007.02.015

Osaka H, Mukherjee P, Aisen PS, Pasinetti GM. Complement-derived anaphylatoxin C5a protects against glutamate-mediated neurotoxicity. J Cell Biochem 1999;73:303-11. http://dx.doi.org/10.1002/(SICI)10974644(19990601)73:3<303::AIDJCB2>3.0.CO;2-2 http://dx.doi.org/10.1002/(SICI)1097-4644(19990601)73:3<303::AIDJCB2>3.3.CO;2-U

Pisalyaput K, Tenner AJ. Complement component C1q inhibits bamyloidand serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms. J Neurochem 2008;104:696-707.

Lu JH, Teh BK, Wang L, Wang YN, Tan YS, Lai MC, et al. The classical and regulatory functions of C1q in immunity and autoimmunity. Cell Mol Immunol 2008;5:9-21. http://dx.doi.org/10.1038/cmi.2008.2

Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutat Res 1992;275:331-42.

Smith MA, Sayre LM, Vitek MP, Monnier VM, Perry G. Early AGEing and Alzheimer’s. Nature 1995;374:316. http://dx.doi.org/10.1038/374316b0

Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007;184:69-91. http://dx.doi.org/10.1016/j.jneuroim.2006.11.017

Benveniste EN, Nguyen VT, O’Keefe GM. Immunological aspects of microglia: relevance to Alzheimer’s disease. Neurochem Int 2001;39:381-91. http://dx.doi.org/10.1016/S0197-0186(01)00045-6

Neumann H, Wekerle H. Neuronal control of the immune response in the central nervous system: Linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol 1998;57:1-9. http://dx.doi.org/10.1097/00005072-199801000-00001

Barger SW, Harmon AD. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 1997;388:878-81. http://dx.doi.org/10.1038/42257

O’Barr SA, Caguioa J, Gruol D, Perkins G, Ember JA, Hugli T, et al. Neuronal expression of a functional receptor for the C5a complement activation fragment. J Immunol 2001;166:4154-62.

Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR. Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 2005;92:226-34. http://dx.doi.org/10.1111/j.1471-4159.2004.02857.x

Town T, Tan J, Flavell RA, Mullan M. T-cells in Alzheimer’s disease. Neuromolecular Med. 2005;7:255-64. http://dx.doi.org/10.1385/NMM:7:3:255

Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, et al. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain barrier. Eur J Clin Invest. 2002;32:360-71. http://dx.doi.org/10.1046/j.1365-2362.2002.00994.x

Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR. Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia. 1999;26:201-11. http://dx.doi.org/10.1002/(SICI)10981136(199905)26:3<201::AIDGLIA2>3.0.CO;2-M

Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001;414:212-6. http://dx.doi.org/10.1038/35102591

Hirohata M, Ono K, Naiki H, Yamada M. Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer’s betaamyloid fibrils in vitro. Neuropharmacology 2005;49:1088-99. http://dx.doi.org/10.1016/j.neuropharm.2005.07.004

McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 1996;47:425-32.

Etminan M, Gill S, Samii A. Effect of non-steroidal antiinflammatory drugs on risk of Alzheimer’s disease: systematic review and metaanalysis of observational studies. BMJ. 2003;327:128-31. http://dx.doi.org/10.1136/bmj.327.7407.128

Klegeris A, McGeer PL. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2005;2:355-65. http://dx.doi.org/10.2174/1567205054367883

Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997;48:626-32.

Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000; 20:5709-14.

Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology 1993;43:1609-11.

Scharf S, Mander A, Ugoni A, Vajda F, Christophidis N. A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology. 1999;53:197-201.

Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, etal. Effects of rofecoxib or naproxen vs. placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 2003;289:2819-26. http://dx.doi.org/10.1001/jama.289.21.2819

Sainati SM, Ingram DM, Talwalker S, Geis GS. Results of a double blind,

placebo-controlled study of celecoxib for the progresion of Alzheimer’s disease. In: Proceedings of the Sixth International Stockholm-Springfield Symposium of Advances in Alzheimer Therapy, 2000, p.180.

Thal LJ, Ferris SH, Kirby L, Block GA, Lines CR, Yuen E, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 2005;30:1204-15. http://dx.doi.org/10.1038/sj.npp.1300690

Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al.

Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400:173-7. http://dx.doi.org/10.1038/22124

Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al.

Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000;6:916-9. http://dx.doi.org/10.1038/78682

Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2000;408:982-5. http://dx.doi.org/10.1038/35050116

Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, et

al. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 2000;408:979-82. http://dx.doi.org/10.1038/35050110

Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, et al. A learning deficit related to age and betaamyloid plaques in a mouse model of Alzheimer’s disease. Nature. 2000;408:975-9. http://dx.doi.org/10.1038/35046031 http://dx.doi.org/10.1038/35050103

Brody DL, Holtzman DM. Active and Passive Immunotherapy for Neurodegenerative Disorders. Annu Rev Neurosci 2008;31:175-93. http://dx.doi.org/10.1146/annurev.neuro.31.060407.125529

Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005;64:94-101.

Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003;9:448-52. http://dx.doi.org/10.1038/nm840

Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003;61:46-54.

Publicado
2011-06-30
Como Citar
Rocha, N. P., Martins, L. da C. A., Teixeira, A. L., & Reis, H. J. (2011). Processo Inflamatório e Neuroimunomodulação na Doença de Alzheimer. Revista Neurociências, 19(2), 300-313. https://doi.org/10.34024/rnc.2011.v19.8385
Seção
Revisão de Literatura