Efeitos da estimulação elétrica funcional no controle neuromuscular artificial

Autores

  • Eddy Krueger Beck Fisioterapeuta, Doutorando em Engenharia Biomédica pela UTFPR, Bolsista CAPES. Curitiba-PR, Brasil.
  • Eduardo Mendonça Scheeren Educador Físico, MSc. em Ciências do Movimento Humano pela UFRGS – RS, Doutorando em Engenharia Biomédica pela UTFPR, Curitiba-PR, Brasil. Bolsista CAPES.
  • Guilherme Nunes Nogueira Neto Engenheiro de Computação, Doutorando em Engenharia Biomédica pela UNICAMP, Bolsista CNPQ. Campinas-SP, Brasil.
  • Vera Lúcia da Silveira Nantes Button Doutora em Engenharia Biomédica pela UNICAMP, Campinas-SP, Docente da UNICAMP, Campinas-SP, Brasil.
  • Percy Nohama Doutor em Engenharia Biomédica pela UNICAMP, Campinas-SP, Docente da PUCPR e da UTFPR, Curitiba-PR, Brasil.

DOI:

https://doi.org/10.4181/RNC.2010.06ip.11

Palavras-chave:

Estimulação Elétrica, Medula Espinhal, Plasticidade Neuronal, Reabilitação

Resumo

Regiões distintas do sistema nervoso central ativam o sistema neuromuscular. Atualmente, utilizam-se sistemas artificiais para mimetizarem as ações fisiológicas perdidas devido a uma lesão neurológica. A estimulação elétrica de tecidos humanos in vivo, como forma de tratamento, desenvolveu-se por meio de pesquisas e do aprimoramento da tecnologia. Pessoas que sofreram lesão medular podem perder parcial ou totalmente a função motora de uma determinada região corporal. A aplicação de estimulação elétrica no tecido neuromuscular gera movimentação artificial que pode desenvolver uma melhora de longo prazo através da plasticidade neuronal. A estimulação elétrica funcional pode utilizar variados parâmetros, eletrodos e locais de aplicação. Quando o ajuste e correção dos parâmetros estimulatórios ocorre manualmente, tem-se um sistema em malha aberta, quando ocorre automaticamente, o sistema denomina-se controle em malha fechada. Ambas as formas contribuem para a reabilitação física de pacientes acometidos por lesão neuronal. Os sistemas em malha fechada apresentam vantagens em relação aos de malha aberta, como a correção automática dos parâmetros de estimulação. Assim, com o desenvolvimento de estratégias de controle e a criação de interfaces amigáveis, a ativação do conjunto de equipamentos e softwares que viabilizarão o movimento artificial poderá ser efetuada pelo próprio usuário, assemelhando-se ao sistema fisiológico humano.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Fodstad H, Hariz M. Electricity in the treatment of nervous system disease. Acta Neurochir Suppl 2007;97:11. http://dx.doi.org/10.1007/978-3-211-33079-1_2

Popovic MR, Thrasher TA. Neuroprostheses. In: Bowlin GL, Wnek G (eds). Encyclopedia of Biomaterials and Biomedical Engineering. New York: Informa Healthcare, 2004, p.1056-65.

Galvani L. De viribus electricitatis in motu musculari commentarius. Bon Sci Art Inst Acad Comm 1791:363-418.

Verkhratsky A, Krishtal OA, Petersen OH. From Galvani to patch clamp: the development of electrophysiology. Pflugers Arch - Eur J Physiol 2006;453:233-47.

Duchenne GB. De l’Electrisation Localisee et de son Application a la Pathologie et a la Therapeutique. Paris: J-B Baillière, 1855, 900p.

DiLorenzo DJ, Bronzino JD. Neuroengineering. Boca Raton: CRC Press, 2007, 408p. http://dx.doi.org/10.1201/9780849381850

He B. Neural engineering. Dordrecht: Kluwer/Plenum, 2005, 488p. http://dx.doi.org/10.1007/b112182

Deluze C, Bosia L, Zirbs A, Chantraine A, Vischer TL. Electroacupuncture in fibromyalgia: results of a controlled trial. Br Med J 1992;305:1249-52. http://dx.doi.org/10.1136/bmj.305.6864.1249

Song JW, Yang LJ, Russell SM. Peripheral nerve: what’s new in basic science laboratories. Neurosurg Clin N Am 2009;20:121-31. http://dx.doi.org/10.1016/j.nec.2008.07.026

Popovic MR, Curt A, Keller T, Dietz V. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 2001;39:403-12. http://dx.doi.org/10.1038/sj.sc.3101191

O’Donovan KJ, O’Keeffe DT. Movement monitoring FES system. Annual Conference of the International Functional Electrical Stimulation Society, Cleveland, 2001, p. 1-3.

Graupe D, Kohn KH. Functional electrical stimulation for ambulation by paraplegics: Twelve years of clinical observations and system studies. Malabar: Krieger Publishing Company, 1994, 194p.

Isakov E, Mizrahi J, Najenson T. Biomechanical and physiological evaluation of FES-activated paraplegic patients. J Rehabil Res Dev 1986;23:9-19.

McNeil CJ, Murray BJ, Rice CL. Differential changes in muscle oxygenation between voluntary and stimulated isometric fatigue of human dorsiflexors. J Appl Physiol 2006;100:890-5. http://dx.doi.org/10.1152/japplphysiol.00921.2005

Hamada T, Hayashi T, Kimura T, Nakao K, Moritani T. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J Appl Physiol 2004; 96:911-6. http://dx.doi.org/10.1152/japplphysiol.00664.2003

Packman-Braun R. Relationship between functional electrical stimulation duty cycle and fatigue in wrist extensor muscles of patients with hemiparesis. Phys Ther 1988;68:51-6.

Thorsen R, Spadone R, Ferrarin M. A pilot study of myoelectrically controlled FES of upper extremity. IEEE Trans Neural Syst Rehabil Eng 2001;9:161-8. http://dx.doi.org/10.1109/7333.928576

Hoshimiya N, Naito A, Yajima M, Handa Y. A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: a respiration-controlled system for multijoint upper extremity. IEEE Trans Biomed Eng 1989;36:754-60. http://dx.doi.org/10.1109/10.32108

Crago PE, Memberg WD, Usey MK, Keith MW, Kirsch RF, Chapman GJ, et al. An elbow extension neuroprosthesis for individuals with tetraplegia. IEEE Trans Rehabil Eng 1998;6:1-6. http://dx.doi.org/10.1109/86.662614

Kilgore KL, Hart RL, Montague FW, Bryden AM, Keith MW, Hoyen HA, et al. An implanted myoelectrically-controlled neuroprosthesis for upper extremity function in spinal cord injury. Conf Proc IEEE Eng Med Biol Soc 2006;1:1630-3. http://dx.doi.org/10.1109/IEMBS.2006.259939

Maynard FM, Bracken MB, Creasey G, Ditunno JF, Donovan WH, Ducker TB, et al. International standards for neurological and functional classification of spinal cord injury. Spinal Cord 1997;35:266-74. http://dx.doi.org/10.1038/sj.sc.3100432

Burt AA. The epidemiology, natural history and prognosis of spinal cord injury. Curr Orthop 2004;18:26-32. http://dx.doi.org/10.1016/j.cuor.2004.01.001

Lesão Medular: Principais Causas de Lesão Medular Traumática (Endereço na Internet). Brasília: SARAH - Rede Sarah Kubitschek de Hospitais. (atualizado em: 01/2010; acessado em: 01/2010). Disponível em: http://www.sarah.br/paginas/doencas/po/p_08_lesao_medular.htm.

Petrofsky JS. Electrical stimulation: neurophysiological basis and application. Basic Appl Myol 2004;14:205-13.

Venkatasubramanian G, Jung R, Sweeney JD. Functional Electrical Stimulation. In: Webster JG, ed. Encyclopedia of medical devices and instrumentation. 2 ed. New York, NY: John Wiley & Sons, 2006, p.347-66.

Agne JE. Eletroterapia: Teoria e prática. Santa Maria: Orium, 2005, 336p.

Hatzis A, Stranjalis G, Megapanos C, Sdrolias PG, Panourias IG, Sakas DE. The current range of neuromodulatory devices and related technologies. Acta Neurochir Suppl 2007;97:21-9. http://dx.doi.org/10.1007/978-3-211-33079-1_3

Ward AR, Shkuratova N. Russian electrical stimulation: the early experiments. Phys Ther 2002;82:1019.

Audu M, To C, Kobetic R, Triolo R. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia. IEEE Trans Neural Syst Rehabil Eng 2010; In Press. http://dx.doi.org/10.1109/TNSRE.2010.2047594

To CS, Kirsch RF, Kobetic R, Triolo RJ. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking. IEEE Trans Neural Syst Rehabil Eng 2005;13:227-35. http://dx.doi.org/10.1109/TNSRE.2005.847384

Marsolais EB, Kobetic R. Functional electrical stimulation for walking in paraplegia. J Bone Joint Surg 1987; 69:728-33.

Thrasher A, Graham GM, Popovic MR. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters. Artif Organs 2005;29:453-8. http://dx.doi.org/10.1111/j.15251594.2005.29076.x

Baker LL, Bowman BR, McNeal DR. Effects of waveform on comfort during neuromuscular electrical stimulation. Clin Orthop Relat Res 1988;233:75-85.

Rabischong E. Surface action potentials related to torque output in paraplegics’ electrically stimulated quadriceps muscle. Med Eng Phys 1996;18:538-47. http://dx.doi.org/10.1016/1350-4533(96)00001-X

Rooney JG, Currier DP, Nitz AJ. Effect of variation in the burst and carrier frequency modes of neuromuscular electrical stimulation on pain perception of healthy subjects. Phys Ther 1992;72:800-6.

Geddes LA, Baker LE. Principles of applied biomedical instrumentation. 3 ed. New York: Wiley-Interscience, 1989, 961p.

Bronzino JD. Management of medical technology: a primer for clinical engineers. Boston: Butterworth-Heinemann, 1992, 451p.

Marsolais EB, Kobetic R. Development of a practical electrical stimulation system for restoring gait in the paralyzed patient. Clin Orthop Relat Res 1988;233:64-74.

Shimada Y, Sato K, Kagaya H, Konishi N, Miyamoto S, Matsunaga T. Clinical use of percutaneous intramuscular electrodes for functional electrical stimulation. Arch Phys Med Rehabil 1996;77:1014-8. http://dx.doi.org/10.1016/S0003-9993(96)90061-1

Orizio C, Gobbo M, Diemont B. Changes of the force-frequency relationship in human tibialis anterior at fatigue. J Electromyogr Kinesiol 2004;14:523-30. http://dx.doi.org/10.1016/j.jelekin.2004.03.009

Castro MJ, Apple DF, Staron RS, Campos GER, Dudley GA. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol 1999;86:350-8.

Valenga MH, Jorge RF, dos Santos A, Schneider Jr B, Nohama P. Sistema de estimulação elétrica gatilhado por sinal respiratório. 21º Congresso Brasileiro de Engenharia Biomédica, Salvador, 2008, p. 495-8.

Bear MF, Connors BW, Paradiso MA. Neurociências: Desvendando o sistema nervoso. 2 ed. Porto Alegre: Artmed, 2002, 855p.

Machado ABM. Neuroanatomia Funcional 2ed. São Paulo: Atheneu, 2006, 363p.

Kandel ER, Jessell TM, Schwartz JH. Principles of neural science. 3 ed. New York: Elsevier 1991, 1138p.

Tonet O, Marinelli M, Citi L, Rossini PM, Rossini L, Megali G, et al. Defining brain–machine interface applications by matching interface performance with device requirements. J Neurosci Methods 2008;167: 91-104. http://dx.doi.org/10.1016/j.jneumeth.2007.03.015

Kandel ER, Jessell TM, Schwartz JH. Principles of neural science. 3 ed. New York: Elsevier 1991, 1137p.

Graziano MSA. Feedback remapping and the cortical control of movement. In: Latash ML, Lestienne F (eds). Motor control and learning. New York: Springer 2006:97-104. http://dx.doi.org/10.1007/0-387-28287-4_9

Knikou M, Conway BA. Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury. Spinal Cord 2005;43:640-8. http://dx.doi.org/10.1038/sj.sc.3101772

Pierrot-Deseilligny E, Burke DC. The circuitry of the human spinal cord: its role in motor control and movement disorders. Cambridge: Univ Pr, 2005, 642p. http://dx.doi.org/10.1017/CBO9780511545047

Loeb GE. Learning from the spinal cord. J Physiol 2001;533:111-7. http://dx.doi.org/10.1111/j.14697793.2001.0111b.x

Kern H, Stramare R, Martino L, Gargiulo P, Carraro U. Permanent LMN denervation of human skeletal muscle and recovery by hb FES: management and monitoring. Eur J Translat Myol 2010;20:91-104.

Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol 2004;96:1954-60. http://dx.doi.org/10.1152/japplphysiol.00942.2003

Thrasher TA, Flett HM, Popovic MR. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord 2006;44:357-61. http://dx.doi.org/10.1038/sj.sc.3101864

Vanderthommen M, Duchateau J. Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev 2007;35:180-5. http://dx.doi.org/10.1097/jes.0b013e318156e785

Higbie EJ, Cureton KJ, Warren Iii GL, Prior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol 1996;81:2173-81.

Butler DS. Mobilização do sistema nervoso. Barueri: Manole, 2003, 270p.

Rushton DN. Functional electrical stimulation and rehabilitation - an hypothesis. Med Eng Phys 2003;25:75-8. http://dx.doi.org/10.1016/S1350-4533(02)00040-1

Sheffler LR, Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 2007;35:562-90. http://dx.doi.org/10.1002/mus.20758

Lippold OCJ, Nicholls JG, Redfearn JWT. Electrical and mechanical factors in the adaptation of a mammalian muscle spindle. J Physiol 1960;153:209-17.

Lieber RL, Kelly MJ. Torque history of electrically stimulated human quadriceps: implications for stimulation therapy. J Orthop Res 1993;11:131-41. http://dx.doi.org/10.1002/jor.1100110115

Rushton DN. Functional electrical stimulation. Physiol Meas 1997;18:241-76. http://dx.doi.org/10.1088/09673334/18/4/001

Dietz V, Nakazawa K, Wirz M, Erni T. Level of spinal cord lesion determines locomotor activity in spinal man. Exp Brain Res 1999;128:405-9. http://dx.doi.org/10.1007/s002210050861

Donaldson N, Yu CH. A strategy used by paraplegics to stand up using FES. IEEE Trans Rehabil Eng 1998;6:162-7. http://dx.doi.org/10.1109/86.681181

Gollee H, Hunt KJ, Wood DE. New results in feedback control of unsupported standing in paraplegia. IEEE Trans Neural Syst Rehabil Eng 2004;12:73-80. http://dx.doi.org/10.1109/TNSRE.2003.822765

Rueterbories J, Spaich EG, Larsen B, Andersen OK. Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys 2010;32:545-52. http://dx.doi.org/10.1016/j.medengphy.2010.03.007

Bachschmidt RA, Harris GF, Simoneau GG. Walker-assisted gait in rehabilitation: a study of biomechanics andinstrumentation. IEEE Trans Neural Syst Rehabil Eng 2001; 9:96-105. http://dx.doi.org/10.1109/7333.918282

Matsunaga T, Shimada Y, Sato K. Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses. Arch Phys Med Rehabil 1999;80:48-53. http://dx.doi.org/10.1016/S0003-9993(99)90306-4

McAndrew DJ, Rosser NAD, Brown JMM. Mechanomyographic measures of muscle contractile properties are influenced by the duration of the stimulatory pulse. J Appl Res 2006;6:142-52.

Krueger E, Scheeren E, Chu GFD, Nogueira-Neto GN, Button VLdSN. Mechanomyography analysis with 0.2 s and 1.0 s time delay after onset of contraction. BIOSTEC 2010: 3rd International Joint Conference on Biomedical Engineering Systems and Technologies, Valência, 2010, p.296-9.

Zhang Y, Frank CB, Rangayyan RM, Bell GD. Relationships of the vibromyogram to the surface electromyogram of the human rectus femoris muscle during voluntary isometric contraction. J Rehabil Res Dev 1996;33:395-403.

Nogueira-Neto GN, Müller RW, Salles FA, Nohama P, Button VLS. Mechanomyographic sensor: a triaxial accelerometry approach. International Joint Conference on Biomedical Engineering Systems and Technology, Funchal, 2008, p.176-9.

Seki K, Ogura T, Sato M, Ichie M. Changes of the evoked mechanomyogram during electrical stimulation. Annual Conference of the International Functional Electrical Stimulation Society, Brisbane, 2003.

Orizio C, Diemont B, Esposito F, Alfonsi E, Parrinello G, Moglia A, et al. Surface mechanomyogram reflects the changes in the mechanical properties of muscle at fatigue. Eur J Appl Physiol 1999;80:276-84. http://dx.doi.org/10.1007/s004210050593

Krueger-Beck E, Scheeren E, Nogueira-Neto GN, Button VLdSN, Nohama P. Mechanomyographic Response during FES in Healthy and Paraplegic Subjects. 32nd Annual International Conference of the IEEE EMBS; Buenos Aires, 2010, p.626-9.

Krueger-Beck E, Scheeren E, Nogueira-Neto GN, Button VLdSN, Nohama P. Optimal FES Parameters Based on Mechanomyographic Efficiency Index. 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, 2010, p.1378-81.

Jezernik S, Wassink RGV, Keller T. Sliding mode closed-loop control of FES: controlling the shank movement. IEEE Trans Biomed Eng 2004;51:263-72. http://dx.doi.org/10.1109/TBME.2003.820393

Kurosawa K, Futami R, Watanabe T, Hoshimiya N. Joint angle control by FES using a feedback error learning controller. IEEE Trans Neural Syst Rehabil Eng 2005; 13:359-71. http://dx.doi.org/10.1109/TNSRE.2005.847355

Abbas JJ, Triolo RJ. Experimental evaluation of an adaptive feedforward controller foruse in functional neuromuscular stimulation systems. IEEE Trans Rehabil Eng 1997; 5:12-22. http://dx.doi.org/10.1109/86.559345

Zhang D, Zhu K. Model and control of the locomotion of a biomimic musculoskeletal biped. Artif Life Robotics 2006;10:91-5. http://dx.doi.org/10.1007/s10015-005-0369-1

Davoodi R, Andrews BJ. Fuzzy logic control of FES rowing exercise in paraplegia. IEEE Trans Biomed Eng 2004;51:541-3. http://dx.doi.org/10.1109/TBME.2003.821043

Pai YC, Wening JD, Runtz EF, Iqbal K, Pavol MJ. Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults. J Neurophysiol 2003; 90:755-62. http://dx.doi.org/10.1152/jn.01118.2002

Patil PG, Carmena JM, Nicolelis MAL, Turner DA. Ensemble recordings of human subcortical neurons as a source of motor control signals for a brainmachine interface. Neurosurgery 2004;55:27-38.

Tonet O, Marinelli M, Citi L, Rossini PM, Rossini L, Megali G, et al. Defining brain-machine interface applications by matching interface performance with device requirements. J Neurosci Method 2008;167:91-104. http://dx.doi.org/10.1016/j.jneumeth.2007.03.015

Taylor PN, Burridge JH, Dunkerley AL, Lamb A, Wood DE, Norton JA, et al. Patients’ perceptions of the Odstock Dropped Foot Stimulator (ODFS). Clin Rehabil 1999; 13: 439-46. http://dx.doi.org/10.1191/026921599677086409

Fujita K, Handa Y, Hoshimiya N, Ichie M. Stimulus adjustment protocol for FES-induced standing in paraplegiausing percutaneous intramuscular electrodes. IEEE Trans Rehabil Eng 1995;3:360-6. http://dx.doi.org/10.1109/86.481976

Fisekovic N, Popovic DB. New controller for functional electrical stimulation systems. Med Eng Phys 2001; 23:391-9. http://dx.doi.org/10.1016/S1350-4533(01)00069-8

Langzam E, Nemirovsky Y, Isakov E, Mizrahi J. Muscle enhancement using closed-loop electrical stimulation: Volitional versus induced torque. J Electromyogr Kinesiol 2007;17:275-84. http://dx.doi.org/10.1016/j.jelekin.2006.03.001

Baptista RR, Scheeren EM, Macintosh BR, Vaz MA. Low-frequency fatigue at maximal and submaximal muscle contractions. Braz J Med Biol Res 2009;42:380-5. http://dx.doi.org/10.1590/S0100-879X2009000400011

Bailey SN, Hardin EC, Kobetic R, Boggs LM, Pinault G, Triolo RJ. Neurotherapeutic and neuroprosthetic effects of implanted functional electrical stimulation for ambulation after incomplete spinal cord injury. J Rehab Res Develop 2010;47:7-16. http://dx.doi.org/10.1682/JRRD.2009.03.0034

Kern H, Carraro U, Adami N, Biral D, Hofer C, Forstner C, et al. HomeBased Functional Electrical Stimulation Rescues Permanently Denervated Muscles in Paraplegic Patients With Complete Lower Motor Neuron Lesion. Neurorehabil Neural Repair 2010; In Press. http://dx.doi.org/10.1177/1545968310366129

Downloads

Publicado

2011-09-30

Como Citar

Krueger Beck, E., Scheeren, E. M., Nogueira Neto, G. N., Button, V. L. da S. N., & Nohama, P. (2011). Efeitos da estimulação elétrica funcional no controle neuromuscular artificial. Revista Neurociências, 19(3), 530–541. https://doi.org/10.4181/RNC.2010.06ip.11

Edição

Seção

Revisão de Literatura
Recebido: 2019-02-24
Publicado: 2011-09-30

Artigos mais lidos pelo mesmo(s) autor(es)