Mecanismos e Funções da Proteína S100B Durante a Hipóxia

Uma Revisão de Literatura

  • Diego Chaves Aragão Costa Biomédicos UFPI, Parnaíba-PI, Brasil.
  • Larissa Rodrigues dos Santos Silva Biomédicos UFPI, Parnaíba-PI, Brasil.
  • Marcelo Coertjens Educador Físico, Mestre em Ciências do Movimento Humano pela UFRGS, professor Assistente do Curso de Fisioterapia da UFPI, Parnaíba-PI, Brasil.
Palavras-chave: Proteínas S100, Hipóxia, Apneia, Traumatismos Encefálicos

Resumo

Introdução. A S100B é uma proteína ligante de cálcio que possui funções intracelulares e extracelulares como a regulação do metabo­lismo energético, comunicação, crescimento, divisão celular e manu­tenção da homeostase do cálcio. Clinicamente ela tem sido estudada como um marcador bioquímico de lesão cerebral em diversas patolo­gias, incluindo aquelas que cursam com a morte de células neurais por hipóxia. Objetivo. Este trabalho tem como objetivo revisar a relação da S100B com eventos associados à hipóxia cerebral. Método. Trata­-se de uma revisão narrativa resultante de buscas feitas no portal Pub­Med e no Portal Periódicos da Capes com as seguintes palavras-cha­ves: S100, S100B, function of S100B, S100 hypoxia, S100B hypoxia, S100B apnea, apnea, hypoxia. Resultados. A elevação dos níveis da proteína no sangue pode ser observada na lesão provocada pela isque­mia cerebral, após infarto agudo do miocárdio, na hipóxia neonatal, em estudos in vitro, no mergulho em apneia e na síndrome da apneia do sono. Conclusão. Vários estudos relacionam o envolvimento da proteína S100B em diferentes tipos de tecidos a eventos associados à hipóxia, independente, da ocorrência ou não de lesão. Futuras pes­quisas serão necessárias para delinear a relevância e especificidade dos níveis da proteína S100B em resposta a eventos hipóxicos.

Métricas

Carregando métricas...

Referências

Zimmer D, Cornwall EH, Iandar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull 1995;37:417-29. http://dx.doi.org/10.1016/0361-9230(95)00040-2

Sedaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia 2008;12:198-204.

Netto CBO, Conte S, Leite MC, Pires C, Martins TL, Vidal P, et al. Serum S100B protein is increased in fasting rats. Arch Med Res 2006;37:683-6. http://dx.doi.org/10.1016/j.arcmed.2005.11.005

Rambotti MG, Spreca A, Leoncini P, Estenoz M, Costantino-Ceccarini E, Giambanco I, et al. Detection of S-100B protein in Triton cytoskeletons: an immunocytochemical study on cultured Schwann cells. J Histochem Cytochem 1990;38:1583-9. http://dx.doi.org/10.1177/38.11.2212618

Rickmann M, Wolff JR. S100 protein expression in subpopulations of neurons of rat brain. Neuroscience 1995;67:977-91. http://dx.doi.org/10.1016/0306-4522(94)00615-C

Donato R. Perspectives in S-100 protein biology: Review article. Cell Calcium 1991;12:713-26. http://dx.doi.org/10.1016/0143-4160(91)90040-L

Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1999;1450:191-231. http://dx.doi.org/10.1016/S0167-4889(99)00058-0

Gonçalves CA, Leite MC, Guerra MC. Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol 2010;2010:1-7. http://dx.doi.org/10.1155/2010/790431

Stocchero CMA, Muller AP, Oliveira AR, Portela LV. A Proteína S100B e o exercício físico. Rev Bras Ciantropom Desempenho Hum 2010;12:77-81.

Mazzini GS, Schaf DV, Oliveira AR, Gonçalves CA, Belló-Klein A, Bordignon S, et al. The ischemic rat heart releases S100B. Life Sci 2005,77:882-9.

Sorci G, Agneletti AL, Bianchi R, Donato R. Association of S100B with intermediate filaments and microtubules in glial cells. Biochim Biophys Acta 1998;1448:1583-9.

Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 2009;1793:1008-22. http://dx.doi.org/10.1016/j.bbamcr.2008.11.009

Tramontina F, Conte S, Gonçalves D, Gottfried C, Portela LV, Vinade L, et al. Developmental changes in S100B content in brain tissue, cerebrospinal fluid, and astrocyte cultures of rats. Cell Mol Neurobiol 2002;22:373-8. http://dx.doi.org/10.1023/A:1020732304591

Tramontina AC, Tramontina F, Bobermin LD, Zanotto C, Souza DF, Leite MC, et al. Secretion of S100B, an astrocyte-derived neurotrophic protein, is stimulated by fluoxetine via a mechanism independent of serotonin. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1580-3. http://dx.doi.org/10.1016/j.pnpbp.2008.06.001

Portela LV, Tort AB, Schaf DV, Ribeiro L, Nora DB, Walz R, et al. The serum S100B concentration is age dependent. Clin Chem 2002;48:950-2.

Van Eldik L, Wainwright MS. The janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 2003;21:97-108.

Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001;33:637-68. http://dx.doi.org/10.1016/S13572725(01)00046-2

Filipek A, Jastrzebska B, Nowotny M, Kuznicki J. CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the SB100 family. J Biol Chem 2002;277:28848-52.http://dx.doi.org/10.1074/jbc.M203602200

Kessler FHP, Woody G, Portela LVC, Tort ABL, De Boni R, Peuker ACWB, et al. Brain injury markers (S100B and NSE) in chronic cocaine dependents. Rev Bras Psiquiatr 2007;29:134-9. http://dx.doi.org/10.1590/S151644462006005000029

Otto M, Holthusen S, Bahn E, Söhnchen N, Wiltfang J, Geese R, et al. Boxing and running lead to a rise in serum levels of S-100B protein. Int J Sports Med 2000;21:551-5. http://dx.doi.org/10.1055/s-2000-8480

Dietrich MO, Tort AB, Schaf DV, Farina M, Gonçalves CA, Souza DO, et al. Increase in serum S100B protein level after a swimming race. Can J Appl Physiol 2003;28:710-6. http://dx.doi.org/10.1139/h03-054

Schulpis KH, Moukas M, Parthimos T, Tsakiris T, Parthimos N, Tsakiris S. The effect of α-Tocopherol supplementation on training-induced elevation of S100B protein in sera of basketball players. Clin Biochem 2007;40:900-6. http://dx.doi.org/10.1016/j.clinbiochem.2007.04.010

Snyder-Ramos SA, Gruhlke T, Bauer H, Bauer M, Luntz AP, Motsch J, et al. Cerebral and extracerebral release of protein S100B in cardiac surgical patients. Anaesthesia 2004;59:344-9. http://dx.doi.org/10.1111/j.13652044.2004.03663.x

Fontella FU, Cimarosti H, Crema LM, Thomazi AP, Leite MC, Salbego C, et al. Acute and repeated restraint stress influences cellular damage in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bull 2005;65:443-50. http://dx.doi.org/10.1016/j.brainresbull.2005.02.026

Martins RO, Rotta NT, Portela LV, Souza DO. S100b Protein related neonatal hypoxia. Arq Neuropsiquiqtr 2006;64:24-9. http://dx.doi.org/10.1590/S0004-282X2006000100006

Braga CW, Martinez D, Wofchuk S, Portela LV, Souza DO. S100B and NSE serum levels in obstructive sleep apnea syndrome. Sleep Med 2006;7:431-5. http://dx.doi.org/10.1016/j.sleep.2005.12.012

Andersson JP, Linér MH, Jönsson H. Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations. J Appl Physiol 2009; 107:809-15. http://dx.doi.org/10.1152/japplphysiol.91434.2008

Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006;396:201-14. http://dx.doi.org/10.1042/BJ20060195

Baudier J, Gerard D. Ions binding to S100 proteins: structural changes induced by calcium and zinc on S100a and S100b proteins. Biochemistry 1983;22:3360-9. http://dx.doi.org/10.1021/bi00283a009

Landar A, Caddell G, Chessher J, Zimmer DB. Identification of an S100A1/ S100B target protein: phosphoglucomutase. Cell Calcium 1996;20:279-85. http://dx.doi.org/10.1016/S0143-4160(96)90033-0

Issekutz BJ, Miller HI. Plasma free fatty acids during exercise and the effect of lactic acid. Proc Soc Exp Biol Med 1962;16:237-9.

Ziegler DR, Innocente CE, Leal RB, Rodnight R, Gonçalves CA. The S100B protein inhibits phosphorylation of GFAP and vimentin in a cytoskeletal fraction from immature rat hippocampus. Neurochem Res 1998;23:1259-63. http://dx.doi.org/10.1023/A:1020740115790

Frizzo JK, Tramontina F, Bortoli E, Gottfried C, Leal RB, Lengyel I, et al. S100B-mediated inhibition of the phosphorylation of GFAP is prevented by TRTK-12. Neurochem Res 2004;29:735-40. http://dx.doi.org/10.1023/B:NERE.0000018844.51009.40

Bianchi R, Adami C, Giambanco I, Donato R. S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 2007;81:108-18. http://dx.doi.org/10.1189/jlb.0306198

Bianchi R, Giambanco I, Donato R. S100B/RAGE-dependent activation of microglia via NF kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Bone 2008;43:72-83.

Perrone L, G Peluso, MA Melone. RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes. J Cell Physiol 2008;217:60-71. http://dx.doi.org/10.1002/jcp.21474

Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 2004;21:1553-61. http://dx.doi.org/10.1089/neu.2004.21.1553

Kleindienst A, Bullock MR. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma 2006;23:1185-1200. http://dx.doi.org/10.1089/neu.2006.23.1185

Gonçalves CA, Leite MC, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 2008;41:755-63. http://dx.doi.org/10.1016/j.clinbiochem.2008.04.003

Bellander BM, Olafsson IH, Ghatan PH, Bro Skejo HP, Hansson LO, Wanecek M, et al. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir (Wien) 2011;153:90-100. http://dx.doi.org/10.1007/s00701-010-0737-z

Wiesmann M, Steinmeier E, Magerkurth O, Linn J, Gottmann D, Missler U. Outcome prediction in traumatic brain injury: comparison of neurological status, CT findings, and blood levels of S100B and GFAP. Acta Neurol Scand 2010;121:178-85. http://dx.doi.org/10.1111/j.1600-0404.2009.01196.x

Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA 2002;99:4037-42. http://dx.doi.org/10.1073/pnas.052020999

Van Eldik LJ, Christie-Pope B, Bolin LM, Shooter EM, Whetsell JWO. Neurotrophic activity of S100B in cultured dorsal root ganglia from embryonic chick and fetal rat. Brain Res 1991;542:280-5. http://dx.doi.org/10.1016/00068993(91)91579-P

Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ. Neurotrophic protein S100β stimulates glial cell proliferation. Proc Natl Acad Sci 1991;88:3554-8. http://dx.doi.org/10.1073/pnas.88.9.3554

Jingru HU, Van Eldik LJ. S100β induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophis Acta 1996;1313:239-45. http://dx.doi.org/10.1016/0167-4889(96)00095-X

Jingru HU, Ferreira A, Van Eldik LJ. S100 beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem 1997;69:2294-2301.

Adami C, Sorci G, Blasi E, Agneletti AL, Bistoni F, Donato R. S100B expression in and effects on microglia. Glia 2001;33:131-42. http://dx.doi.org/10.1002/1098-1136(200102)33:2<131::AID--GLIA1012>3.0.CO;2-D http://dx.doi.org/10.1002/1098-1136(200102)33:2<131::AID--GLIA1012>3.3.CO;2-4

Mariggió MA, Fulle S, Calissano P, Nicoletti IFG. The brain protein S100ab induces apoptose in PC12 cells. Neurosc 1997;60:29-35. http://dx.doi.org/10.1016/0306-4522(94)90201-149. Kleindienst A, Ross Bullock M. A critical analysis of the role of the neurotrophicprotein S100B in acute brain injury. J Neurotrauma 2006;23:1185-1200. http://dx.doi.org/10.1089/neu.2006.23.1185

Raabe A, Seifert V. Fatal secondary increase in serum S-100B protein after severe head injury. Report of three cases. J Neurosurg 1999;91:875-7. http://dx.doi.org/10.3171/jns.1999.91.5.0875

Godet G, Watremez C, Beaudeux JL, Meersschaert K, Koskas F, Coriat P. S-100beta protein levels do not correlate with stroke in patients undergoing carotid endarterectomy under general anesthesia. J Cardiothorac Vasc Anesth 2001;15:25-8. http://dx.doi.org/10.1053/jcan.2001.20213

Mussack T, Biberthaler P, Kanz KG, Wiedemann E, Gippner-Steppert C, Jochum M. S-100B, sE-selectin, and sP-selectin for evaluation of hypoxic brain damage in patients after cardiopulmonary resuscitation: pilot study. World J Surg 2001;25:539-43. http://dx.doi.org/10.1007/s002680020082

Bellander BM, Olafsson IH, Ghatan PH, Bro Skejo HP, Hansson LO, Wanecek M, et al. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir (Wien) 2011;153:90-100. http://dx.doi.org/10.1007/s00701-010-0737-z

Kim JS, Yoon SS, Kim YH, Ryu JS. Serial measurement of interleukin-6, transforming growth factor-beta, and S-100 protein in patients with acute stroke. Stroke 1996;27:1553-7. http://dx.doi.org/10.1161/01.STR.27.9.1553

Foerch C, Otto B, Singer OC, Neumann-Haefelin T, Yan B, Berkefeld J, et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke 2004;35:2160-4. http://dx.doi.org/10.1161/01.STR.0000138730.03264.ac

Worthmann H, Tryc AB, Deb M, Goldbecker A, Ma YT, Tountopoulou A, et al. Linking infection and inflammation in acute ischemic stroke. Ann N Y Acad Sci 2010;1207:116-22. http://dx.doi.org/10.1111/j.17496632.2010.05738.x

Nylén K, Ost M, Csajbok LZ, Nilsson I, Hall C, Blennow K, et al. Serum levels of S100B, S100A1B and S100BB are all related to outcome after severe traumatic brain injury. Acta Neurochir (Wien) 2008;150:221-7. http://dx.doi.org/10.1007/s00701-007-1489-2

Böttiger BW, Möbes S, Glätzer R, Bauer H, Gries A, Bärtsch P, et al. Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 2001;103:2694-8. http://dx.doi.org/10.1161/01.CIR.103.22.2694

Pichiule P, Chavez JC, Schmidt AM, Vannucci SJ. Hypoxia-inducible factor- 1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. J Biol Chem 2007;282:36330-40. http://dx.doi.org/10.1074/jbc.M706407200

Cai X, Lu L, Wang Y, Jin C, Zhang R, Zhang Q, et al. Association of increased S100B, S100A6 and S100P in serum levels with acute coronary syndrome and also with the severity of myocardial infarction in cardiac tissue of rat models with ischemia-reperfusion injury. Atherosclerosis 2011;217:536-42. http://dx.doi.org/10.1016/j.atherosclerosis.2011.05.023

Gerlach R, Demel G, König HG, Gross U, Prehn JH, Raabe A, et al. Active secretion of S100B from astrocytes during metabolic stress. Neuroscience 2006;141:1697-1701. http://dx.doi.org/10.1016/j.neuroscience.2006.05.008

Gürsoy M, Büyükuysal RL. Mechanism of S100b release from rat cortical slices determined under basal and stimulated conditions. Neurochem Res 2010;35:429-36. http://dx.doi.org/10.1007/s11064-009-0075-9

Vicente E, Degerone D, Bohn L, Scornavaca F, Pimentel A, Leite MC, et al. Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat. Brain Res 2009;1251:204-12. http://dx.doi.org/10.1016/j.brainres.2008.11.032

Qian J, Zhou D, Wang Y. Umbilical artery blood S100β protein: a tool for the early identification of neonatal hypoxic-ischemic encephalopathy. Eur J Pediatr 2009;168:71-7. http://dx.doi.org/10.1007/s00431-008-0711-4

Loukovaara M, Teramo K, Alfthan H, Hämäläinen E, Stefanovic V, Andersson S. Amniotic fluid S100B protein and erythropoietin in pregnancies at risk for fetal hypoxia. Eur J Obstet Gynecol Reprod Biol 2009;142:115-8. http://dx.doi.org/10.1016/j.ejogrb.2008.10.008

Gazzolo D, Marinoni E, Di Iorio R, Bruschettini M, Kornacka M, Lituania M, et al. Measurement of urinary S100B protein concentrations for the early identification of brain damage in asphyxiated full-term infants. Arch Pediatr

Adolesc Med 2003;157:1163-8. http://dx.doi.org/10.1001/archpedi.157.12.1163

Liu L, Zheng C, Peng S, Zhou H, Su Z, He L, et al. Evaluation of urinary S100B protein level and lactate/creatinine ratio for early diagnosis and prognostic prediction of neonatal hypoxic-ischemic encephalopathy. Neonathology 2010;97:41-4. http://dx.doi.org/10.1159/000227292

Guorong L, Shaozheng H, Zhenghua W, Boyi L, Qiuyue C, Peng J, et al. Tei index for prenatal diagnosis of acute fetal hypoxia due to intermittent umbilical cord occlusion in an animal model. Prenat Diagn 2007;27:817-23. http://dx.doi.org/10.1002/pd.1781

Murabayashi M, Minato M, Okuhata Y, Makimoto M, Hosono S, Masaoka N, et al. Kinetics of serum S100B in newborns with intracranial lesions. Pediatr Int 2008;50:17-22. http://dx.doi.org/10.1111/j.1442-200X.2007.02506.x

Gazzolo D, Michetti F. Perinatal S100B protein assessment in human unconventional biological fluids: a minireview and new perspectives. Cardiovasc Psychiatry Neurol 2010;2010:1-5. http://dx.doi.org/10.1155/2010/703563

Gazzolo D, Monego G, Corvino V, Bruschettini M, Bruschettini P, Zelano G, et al. Human milk contains S100B protein. Biochim Biophys Acta 2003;20:209-12. http://dx.doi.org/10.1016/S0304-4165(02)00499-3

Gazzolo D, Lituania M, Bruschettini M, Ciotti S, Sacchi R, Serra G, et al. S100B protein levels in saliva: correlation with gestational age in normal term and preterm newborns. Clin Biochem 2005;38:229-33. http://dx.doi.org/10.1016/j.clinbiochem.2004.12.006

Lee S, Kim E, Chi J, Hashimura K, Mori M. Immunohistochemical detection of S-100, S-100 alpha, S-100 beta proteins, glial fibrillary acidic protein, and neuron specific enolase in the prenatal and adult human salivary glands. Pathol Res Pract 1993;189:1036-43. http://dx.doi.org/10.1016/S0344-0338(11)80677-1

Gazzolo D, Bruschettini M, Lituania M, Serra G, Santini P, Michetti F. Levels of S100B protein are higher in mature human milk than in colostrum and milk-formulae milks. Clin Nutr 2004;23:23-6. http://dx.doi.org/10.1016/S0261-5614(03)00084-0

Amin S, Merle K, Orlando M, Dalzell L, Guillet R. Brainstem maturation in premature infants as a function of enteral feeding type. Pediatrics 2000;106:318-22. http://dx.doi.org/10.1542/peds.106.2.318

Stalnacke BM, Ohlsson A, Tegner Y, Sojka P. Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br J Sports Med 2006;40:313-6. http://dx.doi.org/10.1136/bjsm.2005.021584

Hasselblatt M, Mooren FC, von Ahsen N, Keyvani K, Fromme A, Schwarze- Eicker K, et al. Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology 2004;62:1634-6. http://dx.doi.org/10.1212/01.WNL.0000123092.97047.B1

Aviles-Reyes RX, Angelo MF, Villarreal A, Rios H, Lazarowski A, Ramos AJ. Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem 2010;112:854-69. http://dx.doi.org/10.1111/j.1471-4159.2009.06535.x

Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D’Onofrio M, Caciagli F, et al. Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 2001;19:395-414. http://dx.doi.org/10.1016/S0736-5748(00)00084-8

Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 2001;33:72-86. http://dx.doi.org/10.1002/1098-1136(20010101)33:1<72::AID--GLIA1007>3.0.CO;2-A http://dx.doi.org/10.1002/1098-1136(20010101)33:1<72::AID--GLIA1007>3.3.CO;2-1

Sonka K, Kelemen J, Kemlink D, Volná J, Pretl M, Zima T, et al. Evening and morning plasma levels of protein S100B in patients with obstructive sleep apnea. Neuro Endocrinol Lett 2007;28:575-9.

Silva LG, Mottin CC, Souza DO, Portela LV, Braga CW, Vargas CB, et al. Serum S100B but not NSE levels are increased in morbidly obese individuals affected by obstructive sleep apnea-hypopnea syndrome. Obes Surg 2008;18:993-9. http://dx.doi.org/10.1007/s11695-007-9386-6

Feiner JR, Bickler PE, Severinghaus JW. Hypoxic ventilatory response predicts the extent of maximal breath-holds in man. Respir Physiol 1995;100:213-22. http://dx.doi.org/10.1016/0034-5687(94)00132-J

Moosavi SH, Golestanian E, Binks AP, Lansing RW, Brown R, Banzett RB. Hypoxic and hypercapnic drives to breathe generate equivalent levels of air hunger in humans. J Appl Physiol 2003;94:141-54.

Ferretti G, Costa M, Ferrigno M, Grassi B, Marconi C, Lundgren CE, et al. Alveolar gas composition and exchange during deep breath-hold diving and dry breath holds in elite divers. J Appl Physiol 1991;70:794-802. 86.Stavrinou L, Kalamatianos T, Stavrinou P, Papasilekas T, Psachoulia C, Tzavara C, et al. Serum levels of S-100B after recreational scuba diving. Int J Sports Med 2011;32:912-5. http://dx.doi.org/10.1055/s-0031-1284341

Publicado
2013-09-30
Como Citar
Costa, D. C. A., Silva, L. R. dos S., & Coertjens, M. (2013). Mecanismos e Funções da Proteína S100B Durante a Hipóxia. Revista Neurociências, 21(3), 408-419. https://doi.org/10.34024/rnc.2013.v21.8167
Seção
Artigos de Revisão