Gross Motor Function of A Child With Neurodegeneration With Brain Iron Accumulation (NBIA)
DOI:
https://doi.org/10.34024/rnc.2013.v21.8153Palabras clave:
Pantothenate Kinase-Associated Neurodegeneration, Muscle Rigidity, DystoniaResumen
Introduction. Neurodegeneration with brain iron accumulation (NBIA) involves a group of progressive extrapyramidal disorders characterised by iron accumulation in the brain. Objective. to describe the gross motor function of a child with clinical diagnosis of NBIA. Method. This is a case report involving a 7-year-old child and clinical diagnosis of NBIA. This study evaluated the history of the disease and the neuromotor functions of the child using a neurological physiotherapy evaluation form. The GMFM - Gross Motor Function Measure, a system of quantitative assessment of gross motor function in five broad dimensions, was applied. Case Presentation. Magnetic resonance imaging (MRI) showed the eye-of-the-tiger sign in the medial globus pallidus. Clinical examination presented extrapyramidal signs like dystonia, choreoathetosis, dysarthria and visual impairment. In this case, the combination of clinical and MRI findings was consistent with NBIA. Results. In the A dimension (down and roll) of GMFM, the child achieve a score of 39 points (76% of the gross motor function); in the B dimension (sit) she achieve a total score of 60 points (30% of the function); in the C dimension (crawl and kneel) she achieve a score of 1 point (2% of the function); in the D dimension (standing position) and in the E dimension (walk, run and jump) she did not score in any item. Conclusion. The significant deficit in proximal stability and frequent extensor dystonic spasms affected the child’s functional performance.
Métricas
Referencias
Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. Med Genet 2009;46:73-80. http://dx.doi.org/10.1136/jmg.2008.061929
McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008;70:1614-9. http://dx.doi.org/10.1212/01.wnl.0000310985.40011.d6
Hickman SJ, Ward NS, Surtees RA, Stevens JM, Farmer SF. How broad is the phenotype of Hallervorden-Spatz disease? Acta Neurol Scand 2001;103:201-3. http://dx.doi.org/10.1034/j.1600-0404.2001.103003201.x
Clement F, Devos D, Moreau C, Coubes P, Destee A, Defebvre L. Neurodegeneration with brain iron accumulation: clinical, radiographic and genetic heterogeneity and corresponding therapeutic options. Acta neurol belg 2007;107:26-31.5.Boyacigil S, Tokoğlu F, Paşaoğlu E, Ardiç S, Comoğlu S, Saka M, Oztürk S. Hallervorden-Spatz disease. Australasian Radiology 1996;40:351-3. http://dx.doi.org/10.1111/j.14401673.1996.tb00419.x
Chan KY, Lam CW, Lee LP, Tong SF, Yuen YP. Pantothenate kinase-associated neurodegeneration in two Chinese children: identification of a novel PANK2 gene mutation. Hong Kong Med J 2008;14:70-3.
Gregory A, Hayflick SJ. Neurodegeneration with brain iron accumulation. Folia Neuropathol 2005;43:286-96.
Sharma MC, Aggarwal N, Bihari M, Goyal V, Gaikwed S, Vaishya S, et al. Hallervorden spatz disease: MR and pathological findings of a rare case. Neurol India 2005;53:102-4. http://dx.doi.org/10.4103/0028-3886.15072
Freeman K, Gregory A, Turner A, Blasco P, Hogarth P, Hayflick S. Intellectual and adaptive behaviour functioning in pantothenate kinase-associated neurodegeneration. J Intellect Disabil Res 2007;51:417-26. http://dx.doi.org/10.1111/j.1365-2788.2006.00889.x
Kapoor S, Hortnagel K, Gogia S, Paul R, Malhotra V, Prakash A. Pantothenate Kinase Associated Neurodegeneration (Hallervorden - Spatz Syndrome). Indian J Pediatr 2005;72:261-3. http://dx.doi.org/10.1007/BF02859271
Kyriagis M, Grattan-Smith P, Scheinberg A, Teo C, Nakaji N, Waugh M. Status dystonicus and Hallervorden-Spatz disease: Treatment with intrathecal baclofen and pallidotomy. J Paediatr Child Health 2004;40:322-5. http://dx.doi.org/10.1111/j.1440-1754.2004.00374.x
Kruer C M, Hiken M, Gregory A, Malandrini A, Clark D, Hogarth P, et al. Novel histopathologic findings in molecularly-confirmed pantothenate kinaseassociated neurodegeneration. Brain 2011;134:947-58. http://dx.doi.org/10.1093/brain/awr042
Fung GPG, Chan KY. Cervical myelopathy in an adolescent with Hallervorden- Spatz disease. Pediatr Neurol 2003;29:337-40. http://dx.doi.org/10.1016/S0887-8994(03)00272-8
Gregory A, Hayflick SJ. Neurodegeneration with brain iron accumulation. Folia Neuropathol 2005;43(4):286-96.
Lim BC, Ki CS, Cho A, Hwang H, Kim KJ, Hwang YS, et al. Pantothenate kinase-associated neurodegeneration in Korea: recurrent R440P mutation in PANK2 and outcome of deep brain stimulation. Eur J Neurol 2012;19:556-61. http://dx.doi.org/10.1111/j.1468-1331.2011.03589.x
Justesen CR, Penn RD, Kroin JS, Egel RT. Stereotactic pallidotomy in a child with Hallervorden-Spatz disease. Case report. J Neurosurg 1999;90:551-4. http://dx.doi.org/10.3171/jns.1999.90.3.0551
Mahoney R, Selway R, Lin J. Cognitive functioning in children with pantothenate- kinase associated neurodegeneration undergoing deep brain stimulation. Dev Med Child Neurol 2011;53:275-9. http://dx.doi.org/10.1111/j.1469-8749.2010.03815.x
Camargos ST, Gurgel-Giannetti J, Lees A, Hardy J, Singleton A, Cardoso F. Low prevalence of PANK2 mutations in Brazilian patients with early onset generalized dystonia and basal ganglia abnormalities on MRI. J Neurol Neurosurg Psychiatry 2011;82:1059-60. http://dx.doi.org/10.1136/jnnp.2009.200808
