Carboidrato vs placebo

resposta de BOLD fMRI durante diferentes intensidades de imaginação motora

Autores

  • Gabriela Kaiser Fullin Castanho Nutritionist, PhD student, Faculty of Physical Education, University of Campinas (UNICAMP). Campinas-SP, Brazil.
  • Eduardo Bodnariuc Fontes Physical Educator, Pos doctoral, Faculty of Medical Sciences, UNICAMP. Campinas-SP, Brazil.
  • Heli Mamoru Yoshida Physical Educator, MSc student, Faculty of Physical Education, University of Campinas (UNICAMP). Campinas-SP, Brazil.
  • Brunno Machado de Campos Physicist, PhD student, Faculty of Medical Sciences, University of Campinas (UNICAMP). Campinas-SP, Brazil.
  • Elvis Lira da Silva Physicist, Adjunct Professor, Federal University of Mato Grosso. Campinas- -SP, Brazil.
  • Simone Appenzeller Reumatologist, Professor of Faculty of Medical Sciences, University of Campinas (UNICAMP). Campinas-SP, Brazil.
  • Paula Teixeira Fernandes Psychologist, Professor of Faculty of Physical Education, University of Campinas (UNICAMP). Campinas-SP, Brazil.

DOI:

https://doi.org/10.34024/rnc.2015.v23.8004

Palavras-chave:

Metabolismo de Carboidrato, Exercício, Imaginação, Ressonância Magnética, Cérebro

Resumo

Objetivo. O objetivo deste estudo foi verificar os efeitos da inges­tão de CHO na ativação cerebral durante diferentes intensidades de Imginação Motora (IM). Método. Nove indivíduos (oito homens, 28±4,6 anos) participaram deste estudo e foram submetidos a para­digma de Ressonância Magnética funcional baseado em blocos de IM (corrida, com percepção subjetiva de esforço definida como “leve” e “intensa”) intercalado por momentos de repouso. Duas aquisições fo­ram realizadas, sendo que a solução (CHO ou placebo) era ingerida entre elas. O pré-processamento da imagem e a análise estatística fo­ram realizados com o software SPM8 (p<0,001 não corrigido) para comparar alterações no padrão da atividade cerebral quanto às inten­sidades e à ingestão das substâncias. Resultados. Na intensidade leve, ambas as substâncias ativaram de forma semelhante áreas do córtex do cíngulo posterior e anterior, córtex temporal e fusiforme. Em alta intensidade, ambas as substâncias ativaram o córtex frontal, o caudado e o giro para-hipocampal, tálamo, ínsula e córtex do cíngulo poste­rior. Conclusões. Na intensidade leve, o CHO promoveu semelhante ativação cerebral quando comparado ao placebo, no entanto, com a intensidade “intensa”, foram identificadas outras áreas envolvidas na emoção e regulação homeostática.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Carter J, Jeukendrup AE, Mundel T, Jones DA. Carbohydrate supplementation improves moderate and high-intensity exercise in the heat. Pflugers Arch 2003;446:211-9.

Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition 2004;20:669-77. http://dx.doi.org/10.1016/j.nut.2004.04.0173. Rossi L, Tirapegui J. Current aspects about exercise, nutrition and fatigue. J Phys Edu 1999;13:67-82.

Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol 2009;106:857-64. http://dx.doi.org/10.1152/japplphysiol.91324.2008

Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol 2000;61:397-414. http://dx.doi.org/10.1016/S0301- -0082(99)00057-X

Buxton RB. Introduction to functional Magnetic Resonance Imaging: principles and techniques. New York: Cambridge University Press, 2000, 470p.

Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc 2004;36:2107- 11. http://dx.doi.org/10.1249/01.MSS.0000147585.65709.6F

Carter JM, Jeukendrup AE, Mann CH, Jones DA. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc 2004;36:1543-50. http://dx.doi.org/10.1249/01.MSS.0000139892.69410. D8

Rolls ET. Sensory processing in the brain related to the control of food intake. Proc Nutr Soc 2007;66:96-112. http://dx.doi.org/10.1017/S0029665107005332

Kringelbach ML. Food for thought: hedonic experience beyond homeostasis in the human brain. Neuroscience 2004;126:807-19. http://dx.doi.org/10.1016/j.neuroscience.2004.04.035

Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002;3:142-51. http://dx.doi.org/10.1038/nrn730

Gao Q, Duan X, Chen H. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage 2011;54:1280-8. http://dx.doi.org/10.1016/j.neuroimage. 2010.08.071

Szameitat AJ, Raabe M, Muller HJ, Greenlee MW, Mourao-Miranda J. Motor imagery of voluntary coughing: a functional MRI study using a support vector machine. Neuroreport 2010;21:980-4. http://dx.doi.org/10.1097/WNR.0b013e32833e926f.

Tomasino B, Weiss PH, Fink GR. To move or not to move: imperatives modulate action-related verb processing in the motor system. Neuroscience 2010;169:246-58. http://dx.doi.org/10.1016/j.neuroscience.2010.04.039

Guillot A, Lebon F, Rouffet D, Champely S, Doyon J, Collet C. Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol 2007;66:18-27. http://dx.doi.org/10.10

/j.ijpsycho. 2007.05.00916.Jeannerod M. The representing brain: Neural correlates of motor intention and imagery. Behav Brain Sci 1994;17:187-202. http://dx.doi.org/10.1017/S0140525X00034026

Denis M. Visual imagery and the use of mental practice in the development of motor skills. Can J Appl Sport Sci 1985;10:4-16S.

Ross JS, Tkach J, Ruggieri PM, Lieber M, Lapresto E. The mind’s eye: functional MR imaging evaluation of golf motor imagery. AJNR Am J Neuroradiol 2003;24:1036-44.

Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex 2010;46:161-9. http://dx.doi.org/10.1016/j.cortex.2008.06.008

Talati A, Hirsch J. Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on “what,” “when,” and “where” related information: an fMRI study. J Cogn Neurosci 2005;17:981-93. http://dx.doi.org/10.1162/0898929054475226

Stuss DT, Knight, R.T. Principles of Frontal Lobe Function. New York: Oxford University Press, 2002, 640p.

McLachlan RS. A brief review of the anatomy and physiology of the limbic system. Can J Neurol Sci 2009; 36(Suppl 2):S84-7.

Bromm B. Brain images of pain. News Physiol Sci 2001;16:244-9.

Bartels A, Zeki S. The neural basis of romantic love. Neuroreport 2000;11:3829-34.

Kreifelts B, Ethofer T, Grodd W, Erb M, Wildgruber D. Audiovisual integration of emotional signals in voice and face: an event-related fMRI study. Neuroimage 2007;37:1445-56. http://dx.doi.org/10.1016/j.neuroimage.2007.06.020

Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2001;2:417-24. http://dx.doi.org/10.1038/35077500

Craig AD. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci 2009;10:59-70. http://dx.doi.org/10.1038/nrn2555

Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 2002;3:655-66. http://dx.doi.org/10.1038/nrn894

Williamson JW, McColl R, Mathews D, Ginsburg M, Mitchell JH. Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol 1999;87:1213-9.

Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 2009;587:1779-94. http://dx.doi.org/10.1113/jphysiol.2008.164285.

Downloads

Publicado

2015-09-30

Como Citar

Castanho, G. K. F., Fontes, E. B., Yoshida, H. M., Campos, B. M. de, Silva, E. L. da, Appenzeller, S., & Fernandes, P. T. (2015). Carboidrato vs placebo: resposta de BOLD fMRI durante diferentes intensidades de imaginação motora. Revista Neurociências, 23(3), 390–396. https://doi.org/10.34024/rnc.2015.v23.8004

Edição

Seção

Artigos Originais
Recebido: 2019-02-12
Publicado: 2015-09-30