Exergaming: impacto na capacidade aeróbica e força manual no Transtorno do Espectro Autista
DOI:
https://doi.org/10.34024/rnc.2025.v33.20522Palavras-chave:
Exergaming, Transtorno do Espectro Autista, Capacidade aeróbica, Força de Preensão ManualResumo
Objetivo. Analisar os efeitos do exergaming na capacidade aeróbica, percepção de esforço, força de preensão manual e equilíbrio em indivíduos com Transtorno do Espectro Autista (TEA). Método. Foi realizado um ensaio clínico cruzado com 10 voluntários de ambos os sexos, diagnosticados com TEA (10,50±0,84 anos; Índice de Massa Corporal (IMC) =21,51±1,38kg/m²). Os voluntários foram randomizados em dois momentos de intervenção: Exergaming (EXE) e Sem Intervenção (WI), com um período de washout de um mês entre os cruzamentos dos momentos avaliados. O momento EXE consistiu em exergaming utilizando o Nintendo Wii®, com os jogos Basic Run Plus e Mario Kart Wii, duas vezes por semana, totalizando 10 sessões. Todos foram avaliados quanto à capacidade aeróbica por meio do teste de caminhada de 6 minutos (TC6), percepção de esforço pela Escala Modificada de Borg, equilíbrio postural na presença e ausência da visão utilizando a plataforma Wii Balance Board® (WBB) e força de preensão manual de ambas as mãos com um dinamômetro digital. Resultados. No momento EXE, foram observados aumentos na distância percorrida no TC6 (p<0,001) e na força de preensão manual (Direita: p<0,001; Esquerda: p<0,001) em comparação ao momento WI. No momento EXE, houve redução na percepção de esforço (p=0,011), sem alterações significantes nas variáveis de equilíbrio postural. Conclusão. Neste estudo, o momento EXE promoveu melhora na capacidade aeróbica, na força de preensão manual e na redução da percepção de esforço, sem alterar o equilíbrio postural de voluntários com TEA.
Métricas
Referências
1.Ferreira JP, Ghiarone T, Junior CRC, Furtado GE, Carvalho HM, Rodrigues AMM, et al. Effects of physical exercise on the stereotyped behavior of children with autism spectrum disorders. Medicina 2019;55:685-703. https://doi.org/10.3390/medicina55100685
2.Huang J, Du C, Liu J, Tan G. Meta-Analysis on intervention effects of physical activities on children and adolescents with autism. Int J Environ Res Public Health 2020;17:1950. https://doi.org/10.3390/ijerph17061950
3.Ji C, Yang J, Lin L, Chen S. Executive function improvement for children with autism spectrum disorder: a comparative study between virtual training and physical exercise methods. Children (Basel) 2022;9:507. https://doi.org/10.3390/children9040507
4.Dickinson K, Place M. A Randomised control trial of the impact of a computer-based activity programme upon the fitness of children with autism. Autism Res Treat 2014;2014:419653. https://doi.org/10.1155/2014/419653
5.Must A, Phillips S, Curtin C, Bandini LG. Barriers to physical activity in children with autism spectrum disorders: relationship to physical activity and screen time. J Phys Act Health 2015;12:529-34. https://doi.org/10.1123/jpah.2013-0271
6.Bossink LWM, van der Putten AA, Vlaskamp C. Understanding low levels of physical activity in people with intellectual disabilities: A systematic review to identify barriers and facilitators. Res Dev Disabil 2017;68:95-110. https://doi.org/10.1016/j.ridd.2017.06.008
7.Fang Q, Aiken CA, Fang C, Pan Z. Effects of exergaming on physical and cognitive functions in individuals with autism spectrum disorder: a systematic review. Games Health J 2019;8:74-84. https://doi.org/10.1089/g4h.2018.0032
8.Anderson-Hanley C, Tureck K, Schneiderman RL. Autism and exergaming: effects on repetitive behaviors and cognition. Psychol Res Behav Manag 2011;4:129-37. https://doi.org/10.2147/PRBM.S24016
9.Hilton CL, Cumpata K, Klohr C, Gaetke S, Artner A, Johnson H, et al. Effects of exergaming on executive function and motor skills in children with autism spectrum disorder: a pilot study. Am J Occup Ther 2014;68:57-65. https://doi.org/10.5014/ajot.2014.008664
10.Yu CCW, Wong SWL, Lo FSF, So RCH, Chan DFY. Study protocol: a randomized controlled trial study on the effect of a game-based exercise training program on promoting physical fitness and mental health in children with autism spectrum disorder. BMC Psychiatr 2018;18:1-10. https://doi.org/10.1186/s12888-018-1635-9
11.Rhodes RE, Warburton DE, Bredin SS. Predicting the effect of interactive video bikes on exercise adherence: An efficacy trial. Psychol Health Med 2009;14:631-40. https://doi.org/10.1080/13548500903281088
12.Caro K, Tentori M, Martinez-Garcia AI, Alvelais M. Using the FroggyBobby exergame to support eye-body coordination development of children with severe autism. Int J Hum Comput Stud 2017;105:12-27. https://doi.org/10.1016/j.ijhcs.2017.03.005
13.Senn S. Crossover trials in clinical research. 2nd ed. Hoboken: John Wiley & Sons, Ltd.;2002. https://doi.org/10.1002/0470854596
14.Nolan SJ, Hambleton I, Dwan K. The Use and reporting of the cross-over study design in clinical trials and systematic reviews: a systematic assessment. PLoS One 2016;11:e0159014. https://doi.org/10.1371/journal.pone.0159014
15.Silva Alves R, Carvalho JM, Borges JBC, Nogueira DA, Iunes DH, Carvalho LC. Effect of exergaming on quality of life, fatigue, and strength and endurance muscle in cancer patients: a randomized crossover trial. Games Health J 2023;12:358-65. https://doi.org/10.1089/g4h.2022.0161
16.Lee SC, Wu LC, Chiang SL, Lu LH, Chen CY, Lin CH, et al. Validating the capability for measuring age-related changes in grip-force strength using a digital hand-held dynamometer in healthy young and elderly adults. BioMed Res Int 2020;2020:6936879. https://doi.org/10.1155/2020/6936879
17.Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am 1984;9:222-6. https://doi.org/10.1016/s0363-5023(84)80146-x
18.American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 2002;165:277–304. https://doi.org/10.1164/ajrccm.165.2.ats01
19.Burdon JGW, Juniper EF, Killian KJ, Hargreave FE, Campbell EJ. The perception of breathlessness in asthma. Am Rev Respir Dis 1982;126:825-8. https://doi.org/10.1164/arrd.1982.126.5.825
20.Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010;31:307-10. https://doi.org/10.1016/j.gaitpost.2009.11.012
21.Cohen J. Statistical power analysis for the behavioral sciences, 2nd ed. New York: Lawrence Erlbaum Associates, Pub; 2013. https://doi.org/10.4324/9780203771587.9
22.Matson JL, Kozlowski AM. The increasing prevalence of autism spectrum disorders. Res Autism Spectr Disord 2011;5:418-25. https://doi.org/10.1016/j.rasd.2010.06.004
23.Ludyga S, Pühse U, Gerber M, Mücke M. Muscle strength and executive function in children and adolescents with autism spectrum disorder. Autism Res. 2021;14;2555-63. https://doi.org/10.1002/aur.2587
24.Ansari S, Hosseinkhanzadeh AA, AdibSaber F, Shojaei M, Daneshfar A. The Effects of aquatic versus kata techniques training on static and dynamic balance in children with autism spectrum disorder. J Autism Dev Disord 2021;51:3180-6. https://doi.org/10.1007/s10803-020-04785-w
25.Getchell N, Miccinello D, Blom M, Morris L, Szaroleta M. Comparing energy expenditure in adolescents with and without autism while playing Nintendo® Wii(™) Games. Games Health J 2012;1:58-61. https://doi.org/10.1089/g4h.2011.0019
26.Mazurek MO, Engelhardt CR. Video game use in boys with autism spectrum disorder, ADHD, or typical development. Pediatrics 2013;132:260-6. https://doi.org/10.1542/peds.2012-3956
27.Hassanlouei H, Falla D, Arendt-Nielsen L, Kersting UG. The effect of six weeks endurance training on dynamic muscular control of the knee following fatiguing exercise. J Electromyogr Kinesiol 2014;24:682-8. https://doi.org/10.1016/j.jelekin.2014.06.004
28.Taube W, Gruber M, Gollhofer A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiol Oxf Engl 2008;193:101-16. https://doi.org/10.1111/j.1748-1716.2008.01850.x
29.Di Giulio I, Maganaris CN, Baltzopoulos V, Loram ID. The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. J Physiol 2009;587:2399-416. https://doi.org/10.1113/jphysiol.2009.168690
30.Alaniz ML, Galit E, Necesito CI, Rosario ER. Hand strength, handwriting, and functional skills in children with autism. Am J Occup Ther 2015;69: 6904220030p1-9. https://doi.org/10.5014/ajot.2015.016022
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Micaela Scodeler dos Santos, Ana Karoline de Oliveira Pereira, Simone Ribeiro da Costa Soares, Bruna Leonel Carlos, Ricardo da Silva Alves

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
