Disfunções oculomotoras e queixa de tontura em indivíduos com lesão cerebral traumática: uma revisão sistemática

Autores

DOI:

https://doi.org/10.34024/rnc.2025.v33.20491

Palavras-chave:

Lesões Encefálicas Traumáticas, Transtornos da motilidade ocular, Tontura

Resumo

Introdução. A lesão cerebral traumática pode resultar em disfunções oculomotoras e vestibulares, impactando o equilíbrio, frequentemente associadas à tontura. A caracterização detalhada desses déficits ainda não está consolidada. Objetivo. Descrever características de disfunções oculomotoras e queixa de tontura em indivíduos com lesão cerebral traumática. Método. Trata-se de uma revisão sistemática, baseada no PRISMA e registrada no PROSPERO. A busca foi realizada nas bases PubMed e BVS. Incluiu-se estudos observacionais que avaliaram movimentos oculares e tontura nestes indivíduos. Excluíram-se estudos com animais, uso de medicamentos, amostras menores que dez participantes e publicações não indexadas. Resultados. Levantou-se 11 artigos, sendo sete foram incluídos, publicados entre 2015 e 2024. Identificou-se déficits em sacadas, perseguição suave e reflexo vestíbulo-ocular, além de alterações em testes como nistagmo, anulação de alinhamento vertical e torcional, Gaze Stabilization Test e potencial miogênico evocado vestibular ocular. Alguns estudos descreveram uma relação entre o Dizziness Handicap Inventory e maior número de disfunções oculomotoras.  Conclusão. Indivíduos com lesão cerebral traumática, além de se queixarem de tontura persistente, frequentemente apresentam disfunções oculomotoras, sugerindo que a integridade do sistema oculomotor é frequentemente comprometida nesses casos.

Métricas

Carregando Métricas ...

Referências

1.Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci 2015;66:75-80. https://doi.org/10.1016/j.mcn.2015.03.001

2.Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplantation 2017;26:1118-30. https://doi.org/10.1177/0963689717714102

3.Mucha A, Fedor S, DeMarco D. Vestibular dysfunction and concussion. Sports Neurol 2018;158:135-44. https://doi.org/10.1016/B978-0-444-63954-7.00014-8.

4.Banman CJ, Schneider KJ, Cluff T, Peters RM. Altered Vestibular Balance Function in Combat Sport Athletes. J Neurotr 2021;38:2291-300. https://doi.org/10.1089/neu.2020.7432

5.Mor R, Taguchi KC, Figueiredo V, Taguchi K, Figueiredo H. Vestibulometria e Fonoaudiologia: como realizar e interpretar. São Paulo: Lovise; 2001.

https://www.scienceopen.com/document?vid=4dfaec96-3518-4855-a387-7a58940fbf3b

6.Pignatari SSN, Anselmo-Lima WT (eds). Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Tratado de Otorrinolaringologia e Cirurgia Cérvico-Facial da ABORL-CCF. São Paulo: Elsevier; 2017. https://www.grupogen.com.br/tratado-de-otorrinolaringologia-e-cirurgia-cervicofacial-da-aborl-ccf

7.Bicas HEA. Oculomotricidade e seus fundamentos. Arq Bras Oftalmol 2003;66:687-700. https://doi.org/10.1590/S0004-27492003000500026

8.Bilbao C, Piñero DP. Clinical characterization of oculomotricity in children with and without specific learning disorders. Brain Sci 2020;10:836. https://doi.org/10.3390/brainsci10110836

9.Kawata K, Tierney R, Phillips J, Jeka JJ. Effect of repetitive sub-concussive head impacts on ocular near point of convergence. Int J Sports Med 2016;37:405-10. https://doi.org/10.1055/s-0035-1569290

10.Kontos AP, Deitrick JM, Collins MW, Mucha A. Review of vestibular and oculomotor screening and concussion rehabilitation. J Athl Train 2017;52:256-61. https://doi.org/10.4085/1062-6050-51.11.05

11.Ventura RE, Balcer LJ, Galetta SL, Rucker JC. Ocular motor assessment in concussion: Current status and future directions. J Neurol Sci 2016;361:79-86. https://doi.org/10.1016/j.jns.2015.12.010

12.Mucha A, Collins MW, Elbin RJ, Furman JM, Troutman-Enseki C, DeWolf RM, et al. A Brief Vestibular/Ocular Motor Screening (VOMS) assessment to evaluate concussions: preliminary findings. Am J Sports Med 2014;42:2479-86. https://doi.org/10.1177/0363546514543775

13.Swan AA, Akin FW, Amuan ME, Riska KM, Hall CD, Kalvesmaki A, et al. Disruptive dizziness among post-9/11 veterans with deployment-related traumatic brain injury. J Head Trauma Rehabil 2021;37:199-212. https://doi.org/10.1097/HTR.0000000000000714

14.Chan Y, Thorne PR, Taylor RL. Self-reported dizziness, balance, and multisensory impairment following mild traumatic brain injury: an exploratory study. J R Soc N Z 2024;55:451-65. https://doi.org/10.1080/03036758.2024.2001157

15.Carr S, Rutka J. Post-traumatic dizziness. Curr Otorhinolaryngol Rep 2017;5:142-51. https://doi.org/10.1007/s40136-017-0146-4

16.Marcus HJ, Paine H, Sargeant M, Wolstenholme S, Collins K, Marroney N, et al. Vestibular dysfunction in acute traumatic brain injury. J Neurol 2019;266:2430-3. https://doi.org/10.1007/s00415-019-09403-z

17.Gianoli GJ. Post-concussive dizziness: A review and clinical approach to the patient. Front Neurol 2022;12:746392. https://doi.org/10.3389/fneur.2021.746392

18.Pimentel BN, Silveira ABD, Santos Filha VAV. Aspectos otoneurológicos em traumatismos cranioencefálicos: série de casos. Audiol Commun Res 2018;23:e2227. https://doi.org/10.1590/2317-6431-2016-1776

19.Stuart S, Parrington L, Martini D, Peterka R, Chesnutt J, King L. The measurement of eye movements in mild traumatic brain injury: a structured review of an emerging area. Front Sports Act Living 2020;2:5. https://doi.org/10.3389/fspor.2020.00005

20.Réus JC, Honnef LR, Massignan C, Stefani CM, Canto GL. Análise da qualidade metodológica de estudos observacionais (coorte, caso-controle e transversal) com as ferramentas do Joanna Briggs Institute (JBI). In: Canto GL, Stefani CM, Massignan C (eds). Risco de viés em revisões sistemáticas: guia prático. Florianópolis: Centro Brasileiro de Pesquisas Baseadas em Evidências – COBE UFSC; 2021. p.223-36. https://guiariscodeviescobe.paginas.ufsc.br/capitulo-11-analise-da-qualidade-metodologica-de-estudos-observacionais-coorte-caso-controle-e-transversal-com-as-ferramentas-do-joanna-briggs-institute-jbi/

21.Honaker JA, Criter RE, Patterson JN, Jones SM. Gaze Stabilization Test Asymmetry Score as an Indicator of Previous Concussion in a Cohort of Collegiate Football Players. Clin J Sport Med 2015;25:361-6. https://doi.org/10.1097/JSM.0000000000000160

22.Schubert MC, Yoav Gimmon, Millar J, Brewer KJ, Roberts D, Shelhamer M, et al. Veterans have greater variability in their perception of binocular alignment. PLoS ONE 2018;13:e0209622-2. https://doi.org/10.1371/journal.pone.0209622

23.Jafarzadeh S, Pourbakht A, Bahrami E. Vestibular assessment in patients with persistent symptoms of mild traumatic brain injury. Indian J Otolaryngol Head Neck Surg 2020;74:272-80. https://doi.org/10.1007/s12070-020-02043-0

24.Akin FW, Murnane OD, Hall CD, Riska KM, Sears J. Vestibular and balance function in veterans with chronic dizziness associated with mild traumatic brain injury and blast exposure. Front Neurol 2022;13:930389. https://doi.org/10.3389/fneur.2022.754798

25.Brown DA, Leung FT, Evans K, Grant G, Hides JA. Vestibular and oculomotor function in male combat sport athletes. J Sci Med Sport 2022;25:524-8. https://doi.org/10.1016/j.jsams.2021.12.014

26.Smulligan KL, Carry P, Smith AC, Esopenko C, Baugh CM, Wilson JC, et al. Cervical spine proprioception and vestibular/oculomotor function: An observational study comparing young adults with and without a concussion history. Phys Ther Sport 2024;69:33-9. https://doi.org/10.1016/j.ptsp.2023.07.003

27.Le TTC, Brewer K, Serrador J, Schubert MC. Veterans with dizziness recruit compensatory saccades in each semicircular canal plane although VOR gain is normal. J Vestib Res 2020;30:47-53. https://doi.org/10.3233/VES-200739

28.Arshad Q, Roberts RE, Ahmad H, Lobo R, Patel M, Ham T, et al. Patients with chronic dizziness following traumatic head injury typically have multiple diagnoses involving combined peripheral and central vestibular dysfunction. Clin Neurol Neurosurg 2017;155:17-9. https://doi.org/10.1016/j.clineuro.2017.01.007

29.Voormolen DC, Haagsma JA, Polinder S, Maas AIR, Steyerberg EW, Vuleković P, et al. Post-Concussion Symptoms in Complicated vs. Uncomplicated Mild Traumatic Brain Injury Patients at Three and Six Months Post-Injury: Results from the CENTER-TBI Study. J Clin Med 2020;8:1921. https://doi.org/10.3390/jcm8111921

30.Voormolen DC, Polinder S, von Steinbuechel N, Vos PE, Cnossen MC, Haagsma JA. The association between post-concussion symptoms and health-related quality of life in patients with mild traumatic brain injury. Injury 2019;50:1068-74. https://doi.org/10.1016/j.injury.2018.12.020

31.Romeu-Mejia R, Giza CC, Goldman JT. Concussion pathophysiology and injury biomechanics. Curr Rev Musculoskelet Med 2019;12:105-16. https://doi.org/10.1007/s12178-019-09551-4

32.Wang J, Zhang Y, Yang H, Tian E, Guo Z, Chen J, et al. Advanced progress of vestibular compensation in vestibular neural networks. CNS Neurosci Ther 2024;30:e70037. https://doi.org/10.1111/cns.70037

33.Ettenhofer ML, Hershaw JN, Engle JR, Hungerford LD. Saccadic impairment in chronic traumatic brain injury: examining the influence of cognitive load and injury severity. Brain Inj 2018;32:1740-8. https://doi.org/10.1080/02699052.2018.1496492

34.Mani R, Asper L, Khuu SK. Deficits in saccades and smooth-pursuit eye movements in adults with traumatic brain injury: a systematic review and meta-analysis. Brain Inj 2018;32:1315-36. https://doi.org/10.1080/02699052.2018.1483030

35.Aboukhalil A, Shelhamer M, Clendaniel R. Acquisition of context-specific adaptation is enhanced with rest intervals between changes in context state, suggesting a new form of motor consolidation. Neurosci Lett 2004;369:162-7. https://doi.org/10.1016/j.neulet.2004.07.086

36.Anson ER, Bigelow RT, Carey JP, Xue QL, Studenski S, Schubert MC, et al. VOR gain is related to compensatory saccades in healthy older adults. Front Aging Neurosci 2016;8:150. https://doi.org/10.3389/fnagi.2016.00150

37.Kojima Y, Ling L, Phillips JO. Compensatory saccade in the vestibular impaired monkey. Front Neurol 2023;14:1198471. https://doi.org/10.3389/fneur.2023.1198471

38.Akin FW, Murnane OD, Hall CD, Riska KM. Vestibular consequences of mild traumatic brain injury and blast exposure: a review. Brain Inj 2017;31:1188-94. https://doi.org/10.1080/02699052.2017.1291993

39.Lien SJ, Dickman JD. Vestibular injury after low-intensity blast exposure. Front Neurol 2018;9:648. https://doi.org/10.3389/fneur.2018.00648

40.Casale J, Browne T, Murray IV, Gupta G. Physiology, vestibular system. In: StatPearls. Treasure Island: StatPearls Publishing; 2024. https://www.ncbi.nlm.nih.gov/books/NBK532978/

41.Money-Nolan LE, Flagge AG. Factors affecting variability in vestibulo-ocular reflex gain in the Video Head Impulse Test in individuals without vestibulopathy: A systematic review of literature. J Vestib Res 2023;33:321-30. https://doi.org/10.3233/VES-220023

42.Perez-Fernandez N, Eza-Nuñez P. Normal Gain of VOR with Refixation Saccades in Patients with Unilateral Vestibulopathy. J Int Adv Otol 2015;11:133-7. https://doi.org/10.5152/iao.2015.868

43.Korsager LEH, Faber CE, Schmidt JH, Wanscher JH. Refixation Saccades with Normal Gain Values: A Diagnostic Problem in the Video Head Impulse Test: A Case Report. Front Neurol 2017;8:529. https://doi.org/10.3389/fneur.2017.00529

44.Palidis DJ, Wyder-Hodge PA, Fooken J, Spering M. Distinct eye movement patterns enhance dynamic visual acuity. PLoS One 2017;12:e0172061. https://doi.org/10.1371/journal.pone.0172061

45.Jun M, Jamshid G. Detecting Eye Movement Abnormalities from Concussion. Prog Neurol Surg 2014;28:226-33. https://doi.org/10.1159/000358761

46.King JE, Pape MM, Kodosky PN. Vestibular Test Patterns in the NICoE Intensive Outpatient Program Patient Population. Mil Med 2018;183(Suppl 1):237-44. https://doi.org/10.1093/milmed/usx134

47.Hunfalvay M, Murray NP, Mani R, Carrick FR. Smooth Pursuit Eye Movements as a Biomarker for Mild Concussion within 7-Days of Injury. Brain Inj 2021;35:1682-9. https://doi.org/10.1080/02699052.2021.1946792

48.Hunfalvay M, Murray NP, Roberts CM, Tyagi A, Barclay KW, Carrick FR. Oculomotor Behavior as a Biomarker for Differentiating Pediatric Patients With Mild Traumatic Brain Injury and Age Matched Controls. Front Behav Neurosci 2020;14:581750. https://doi.org/10.3389/fnbeh.2020.581750

49.Maruta J, Lee SW, Jacobs EF, Ghajar J. A unified science of concussion. Ann N Y Acad Sci 2010;1208:58-66. https://doi.org/10.1111/j.1749-6632.2010.05695.x

50.Contreras R, Ghajar J, Bahar S, Suh M. Effect of cognitive load on eye-target synchronization during smooth pursuit eye movement. Brain Res 2011;1398:55-63. https://doi.org/10.1016/j.brainres.2011.05.015

51.De Clercq H, Naude A, Bornman J. Investigating nystagmus in patients with traumatic brain injury: A systematic review (1996–2016). S Afr Med J 2017;107:957–64. https://doi.org/10.7196/samj.2017.v107i11.12472

52.D’Silva LJ, Chalise P, Obaidat S, Rippee M, Devos H. Oculomotor deficits and symptom severity are associated with poorer dynamic mobility in chronic mild traumatic brain injury. Front Neurol 2021;12:635831. https://doi.org/10.3389/fneur.2021.635831

53.Hamidi Nahrani M, Akbari M, Maarefvand M. Relationship between vestibulo-ocular reflex gain and dizziness handicap inventory score to predict effectiveness of vestibular rehabilitation. Aud Vestib Res 2021;30:273–9. https://doi.org/10.18502/avr.v30i4.7445

54.Pimenta C, Correia A, Alves M, Virella D. Effects of oculomotor and gaze stability exercises on balance after stroke: Clinical trial protocol. Porto Biomed J 2017;2:76-80. https://doi.org/10.1016/j.pbj.2017.01.001

55.Hiploylee C, Dufort PA, Davis HS, Wennberg RA, Tartaglia MC, Mikulis D, et al. Longitudinal study of postconcussion syndrome: Not everyone recovers. J Neurotrauma 2017;34:1511–23. https://doi.org/10.1089/neu.2016.4677

56.Pilkar R, Karunakaran KK, Veerubhotla A, Ehrenberg N, Ibironke O, Nolan KJ. Evaluating sensory acuity as a marker of balance dysfunction after a traumatic brain injury: A psychophysical approach. Front Neurosci 2020;14:836. https://doi.org/10.3389/fnins.2020.00836

57.Row J, Chan L, Damiano D, Shenouda C, Collins J, Zampieri C. Balance assessment in traumatic brain injury: A comparison of the sensory organization and limits of stability tests. J Neurotrauma 2019;36:2435–42. https://doi.org/10.1089/neu.2018.5755

58.Dunlap PM, Mucha A, Smithnosky D, Whitney SL, Furman JM, Collins MW, et al. The gaze stabilization test following concussion. J Am Acad Audiol 2018;29:882–92. https://doi.org/10.3766/jaaa.18015

59.Kenzie ES, Parks EL, Bigler ED, Wright DW, Lim MM, Chesnutt JC, et al. The dynamics of concussion: Mapping pathophysiology, persistence, and recovery with causal-loop diagramming. Front Neurol 2018;9:203. https://doi.org/10.3389/fneur.2018.00203

60.Alexander A, Sweenie R, Meacham B, Pardini J. Gaze stability test asymmetry before and after individualized rehabilitation in youth athletes with concussion. J Sport Rehabil 2025;34:1-9. https://doi.org/10.1123/jsr.2024-0123

61.Thompson-Harvey A, Dutcher CE, Monroe HA, Sinks BC, Goebel JA. Detection of VOR dysfunction during the gaze stabilization test: Does target size matter? J Vestib Res 2021;31:495–504. https://doi.org/10.3233/VES-201522

62.Curthoys IS, Halmagyi GM. Vestibular compensation: Clinical changes in vestibular function with time after unilateral vestibular loss. In: Herdman SJ (ed.). Vestibular rehabilitation. 3rd ed. Philadelphia: F.A. Davis Company; 2007. p.76-98. https://www.amazon.com.br/Vestibular-Rehabilitation-Contemporary-Perspectives-Hardcover/dp/B00ZT0VYH4

63.Furman JM, Cass SP, Whitney SL. Vestibular disorders: A case-study approach to diagnosis and treatment. 3rd ed. New York: Oxford University Press; 2010. https://books.google.mu/books?id=7s81kbINu_MC&printsec=frontcover#v=onepage&q&f=false

64.Tan MR, Serrador J, Perin J, Gimmon Y, Millar J, Brewer K, et al. Binocular alignment changes between sitting and supine positions in patients with dizziness. J Assoc Res Otolaryngol 2022;23:427-33. https://doi.org/10.1007/s10162-022-00853-8

65.Feng Y, Zhao T, Wu Y, Ling X, Zhang M, Song N, et al. The diagnostic value of the ocular tilt reaction plus head tilt subjective visual vertical (±45°) in patients with acute central vascular vertigo. Front Neurol 2022;13:992998. https://doi.org/10.3389/fneur.2022.992998

66.Lee H, Kim HA. Complete ocular tilt reaction with subjective visual vertical tilt in a patient with a medial prefrontal cortex lesion: A case report. Res Vestib Sci 2024;23:24-7. https://doi.org/10.21790/rvs.2024.23.1.24

67.Misale P, Hassannia F, Dabiri S, Brandstaetter T, Rutka J. Post-traumatic peripheral vestibular disorders (excluding positional vertigo) in workers following head injury. Sci Rep 2021;11:8096. https://doi.org/10.1038/s41598-021-87567-3

68.Feller JJ, Duff MC, Clough S, Jacobson GP, Roberts RA, Romero DJ. Evidence of peripheral vestibular impairment among adults with chronic moderate–severe traumatic brain injury. Am J Audiol 2024;33:1-17. https://doi.org/10.1044/2023_AJA-23-00086

69.Silva TR, Macedo L, Aurélio M. Potencial evocado miogênico vestibular ocular: revisão de literatura. Audiol Commun Res 2016;21:e1604. https://doi.org/10.1590/2317-6431-2015-1604

Downloads

Publicado

2025-08-14

Edição

Seção

Revisão Sistemática

Como Citar

1.
Guedes da Paz E, Gomes dos Santos G, Rosário Lopes PR, da Cruz Fernandes L. Disfunções oculomotoras e queixa de tontura em indivíduos com lesão cerebral traumática: uma revisão sistemática. Rev Neurocienc [Internet]. 14º de agosto de 2025 [citado 17º de dezembro de 2025];33:1-33. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/20491