Estudo comparativo entre música clássica e outras músicas sobre a extinção do medo em rato

Autores

DOI:

https://doi.org/10.34024/rnc.2025.v33.20347

Palavras-chave:

Memória de longo prazo, Memória aversiva, Extinção da memória, Musicoterapia, Efeito Mozart

Resumo

Introdução. A exposição à música é benéfica para a aquisição e consolidação da memória. No entanto, pouco se sabe sobre o efeito da música na extinção da memória. Método. Analisamos a influência da exposição à Sonata K448 de Mozart e a outros estilos musicais na extinção da memória do medo em ratos. Ratos Wistar machos foram expostos a diferentes estilos musicais ou sons ambientais desde o período gestacional até a vida adulta. No 39º dia do experimento, os animais foram submetidos ao treinamento de condicionamento aversivo por meio de estimulação elétrica para induzir a memória do medo. Do 67º ao 71º dia, os ratos passaram por testes de extinção do medo, nos quais retornaram à caixa de condicionamento aversivo, mas sem a aplicação de estímulos elétricos. No 92º dia, os animais foram novamente colocados na caixa para o teste de recordação, também sem estímulos elétricos. Resultados. A partir do terceiro dia de extinção, os grupos condicionados expostos a Mozart e a músicas clássicas apresentaram menor comportamento de freezing quando comparados aos grupos expostos à música eletrônica e ao som ambiente. No teste de evocação, o grupo condicionado exposto a Mozart não apresentou diferença significativa em relação ao grupo não condicionado, enquanto os demais grupos condicionados mantiveram níveis elevados de freezing. Conclusão. Nosso estudo sugere que a exposição a músicas clássicas favorece o processo de extinção da memória do medo. Embora limitado a testes comportamentais, os resultados indicam possíveis implicações positivas para o tratamento de transtornos de ansiedade.

Métricas

Carregando Métricas ...

Referências

1.Huang H, Zhao C, Hu Q, Liu Q, Sun Y, Chen C, et al. Neonatal Anesthesia by Ketamine in Neonatal Rats Inhibits the Proliferation and Differentiation of Hippocampal Neural Stem Cells and Decreases Neurocognitive Function in Adulthood via Inhibition of the Notch1 Signaling Pathway. Mol Neurobiol 2021;58:6272-89. https://doi.org/10.1007/s12035-021-02550-3

2.Faria RS, Gutierres LF, Sobrinho FC, Miranda Ido V, Reis JD, Dias EV, et al. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory. Neurosci Lett 2016;628:147-52. https://doi.org/10.1016/j.neulet.2016.06.020

3.Izquierdo LA, Barros DM, Ardenghi PG, Pereira P, Rodrigues C, Choi H, et al. Different hippocampal molecular requirements for short- and long-term retrieval of one-trial avoidance learning. Behav Brain Res 2000;111:93-8. https://doi.org/10.1016/s0166-4328(00)00137-6

4.Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Inter J Mol Sci 2022;23:14622. https://doi.org/10.3390/ijms232314622

5.Zhu S, Chen P, Chen M, Ruan J, Ren W, Zhang X, et al. Alcohol inhibits morphine/cocaine reward memory acquisition and reconsolidation in rats. Psychopharmacology (Berl). 2020;237:1043-53. https://doi.org/10.1007/s00213-019-05433-7

6.Vizeli P, Straumann I, Duthaler U, Varghese N, Eckert A, Paulus MP, et al. Effects of 3, 4-methylenedioxymethamphetamine on conditioned fear extinction and retention in a crossover study in healthy subjects. Front Pharmacol 2022;13:906639. https://doi.org/10.3389/fphar.2022.906639

7.Fendt M, Fanselow MS. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 1999;23:743-60. https://doi.org/10.1016/s0149-7634(99)00016-0

8.Faria RS, Sartori CR, Canova F, Ferrari EA. Classical aversive conditioning induces increased expression of mature-BDNF in the hippocampus and amygdala of pigeons. Neuroscience 2013;255:122-33. https://doi.org/10.1016/j.neuroscience.2013.09.054

9.Rysakova MP, Pavlova IV, Vinogradova LV. Spreading depolarization induced by amygdala micro-injury prevents disruption of fear memory extinction in rats. Behav Brain Res 2021;416:113559. https://doi.org/10.1016/j.bbr.2021.113559

10.Faborode OS, Dalle E, Mabandla MV. Exposure to footshock stress downregulates antioxidant genes and increases neuronal apoptosis in an Aβ(1-42) rat model of Alzheimer's disease. Neurochem Int 2021;150:105170. https://doi.org/10.1016/j.neuint.2021.105170

11.Rauscher FH, Robinson KD, Jens JJ. Improved maze learning through early music exposure in rats. Neurol Res 1998;20:427-32. https://doi.org/10.1080/01616412.1998.11740543

12.Aoun P, Jones T, Shaw GL, Bodner M. Long-term enhancement of maze learning in mice via a generalized Mozart effect. Neurol Res 2005;27:791-6. https://doi.org/10.1179/016164105X63647

13.Meng B, Zhu S, Li S, Zeng Q, Mei B. Global view of the mechanisms of improved learning and memory capability in mice with music-exposure by microarray. Brain Res Bull 2009;80:36-44. https://doi.org/10.1016/j.brainresbull.2009.05.020

14.Lee SM, Kim BK, Kim TW, Ji ES, Choi HH. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups. J Exe Rehabil 2016;12:148-55. https://doi.org/10.12965/jer.1632638.319

15.Whittle N, Fadok J, MacPherson KP, Nguyen R, Botta P, Wolff SBE, et al. Central amygdala micro-circuits mediate fear extinction. Nat Commun 2021;12:4156. https://doi.org/10.1038/s41467-021-24068-x

16.de Carvalho Myskiw J, Benetti F, Izquierdo I. Behavioral tagging of extinction learning. Proc Natl Acad Sci U S A 2013;110:1071-6. https://doi.org/10.1073/pnas.1220875110

17.Solanki MS, Zafar M, Rastogi R. Music as a therapy: role in psychiatry. Asian J Psychiatr 2013;6:193-9. https://doi.org/10.1016/j.ajp.2012.12.001

18.Cook JD. Music as an intervention in the oncology setting. Cancer Nurs 1986;9:23-8. https://doi.org/10.1097/00002820-198602000-00004

19.Chiu P, Kumar A. Music Therapy: Loud Noise or Soothing Notes? Int J Pediatr 2003;18:204-8. https://doi.org/10.2174/1874210601711010565

20.Orentin M, Quintaine V, Yelnik A, Jousse M, Tlili L, Bernard A, et al. Experimental feasibility pilot study: Music therapy and rehabilitation care following a stroke. Ann Phys Rehabil Med 2016;59:e48. https://doi.org/10.1016/j.rehab.2016.07.112

21.Mir IA, Chowdhury M, Islam RM, Ling GY, Chowdhury AABM, Hasan ZM, et al. Relaxing music reduces blood pressure and heart rate among pre-hypertensive young adults: A randomized control trial. J Clin Hypertens 2021;23:317-22. https://doi.org/10.1111/jch.14126

22.Cao M, Zhang Z. Adjuvant music therapy for patients with hypertension: a meta-analysis and systematic review. BMC Complement Med Ther 2023;23:1-11. https://doi.org/10.1186/s12906-023-03929-6

23.Winarto A, Kusnanto K, Harmayetty H. The Music Therapy Effect on Lowering Blood Pressure In Elderly With Hypertension: A Systematic Review. STRADA J Ilmiah Kesehatan 2021;10:1108-18. https://doi.org/10.30994/sjik.v10i1.768

24.Hohneck A, Reyse C, Merx K, Weingartner S, Mayratzas A, Schumacher G, et al. Differential Effects of Sound Intervention and Rest on Cardiovascular Parameters in Cancer Patients: A Randomized Cross-over Trial. Integr Cancer Ther 2021;20:1534735421995239. https://doi.org/10.1177/1534735421995239

25.Kulinski J, Ofori EK, Visotcky A, Smith A, Sparapani R, Fleg JL. Effects of music on the cardiovascular system. Trends in cardiovascular medicine 2022;32:390-8. https://doi.org/10.1016/j.tcm.2021.06.004

26.Bendayan S. The healing power of music: a promising new avenue for cardiovascular health. Front Cardiovasc Med 2023;10:1277055. https://doi.org/10.3389/fcvm.2023.1277055

27.Wang M, Yi G, Gao H, Wu B, Zhou Y. Music-based interventions to improve fibromyalgia syndrome: A meta-analysis. Explore 2020;16:357-62. https://doi.org/10.1016/j.explore.2020.05.012

28.Villafaina S, Collado-Mateo D, Fuentes-García JP, Cano-Plasencia R, Gusi N. Effects of dance on pain in patients with fibromyalgia: A systematic review and meta-analysis. Complem Ther Clin Pract 2021;43:101364. https://doi.org/10.1016/j.ctcp.2021.101364

29.Wang M, Yi G, Gao H, Wu B, Zhou Y. Music-based interventions to improve fibromyalgia syndrome: A meta-analysis. Explore 2020;16:357-62. https://doi.org/10.1016/j.explore.2020.05.012

30.Xing Y, Qin Y, Jing W, Zhang Y, Wang Y, Guo D. Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats. Cogn Neurodyn 2016;10:23-30. https://doi.org/10.1007/s11571-015-9361-1

31.Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Shimizu E. Effects of memory age and interval of fear extinction sessions on contextual fear extinction. Neurosci Lett 2014;578:139-42. https://doi.org/10.1016/j.neulet.2014.06.054

32.Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry 2020;25:2251-74. https://doi.org/10.1038/s41380-019-0639-2

33.Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 2007;53:261-77. https://doi.org/10.1016/j.neuron.2006.11.025

34.Lippi ICC, Caldara FR, Almeida-Paz ICL, Morais HB, Odakura AM, Konkiewitz EC, et al. Effects of music therapy on neuroplasticity, welfare, and performance of piglets exposed to music therapy in the intra- and extra-uterine phases. Animals 2022;12:2211. https://doi.org/10.3390/ani12172211

35.Chikahisa S, Sano A, Kitaoka K, Miyamoto K, Sei H. Anxiolytic effect of music depends on ovarian steroid in female mice. Behav Brain Res 2007;179:50-9. https://doi.org/10.1016/j.bbr.2007.01.010

36.Sacks O. The power of music. Brain 2006;129:2528-32. https://doi.org/10.1093/brain/awl234

37.Koelsch S, Fritz T, V Cramon DY, Müller K, Friederici AD. Investigating emotion with music: an fMRI study. Hum Brain Mapp 2006;27:239-50. https://doi.org/10.1002/hbm.20180

38.Kim H, Lee MH, Chang HK, Lee TH, Lee HH, Shin MC, et al. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats. Brain Dev 2006;28:109-14. https://doi.org/10.1016/j.braindev.2005.05.008

39.Rauscher FH, Shaw GL, Ky KN. Music and spatial task performance. Nature 1993;365:611. https://doi.org/10.1038/365611a0

40.Jausovec N, Jausovec K, Gerlic I. The influence of Mozart’s music on brain activity in the process of learning. Clin Neurophysiol 2006;117:2703-14. https://doi.org/10.1016/j.clinph.2006.08.010

41.Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry 2020;25:2251-74. https://doi.org/10.1038/s41380-019-0639-2

42.Bekinschtein P, Katche C, Slipczuk L, Gonzalez C, Dorman G, Cammarota M, et al. Persistence of long-term memory storage: new insights into its molecular signatures in the hippocampus and related structures. Neurotox Res 2010;18:377-85. https://doi.org/10.1007/s12640-010-9155-5

43.American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth edition (DSM-5). Porto Alegre: Artmed; 2013.

44.Georgieva I, Lepping P, Bozev V, Lickiewicz J, Pekara J, Wikman S, et al. Prevalence, new incidence, course, and risk factors of PTSD, depression, anxiety, and panic disorder during the Covid-19 pandemic in 11 countries. Healthcare 2021;9:664. https://doi.org/10.3390/healthcare9060664

45.Moitra M, Santomauro D, Degenhardt L, Collins PY, Whiteford H, Vos T, et al. Estimating the risk of suicide associated with mental disorders: A systematic review and meta-regression analysis. J Psychiatr Res 2021;137:242-9. https://doi.org/10.1016/j.jpsychires.2021.02.053

46.Bhatt S, Devadoss T, Jha NK, Baidya M, Gupta G, Chellappan DK, et al. Targeting inflammation: a potential approach for the treatment of depression. Metab Brain Dis 2023;38:45-59. https://doi.org/10.1007/s11011-022-01095-1

47.Jenabi E, Bashirian S, Ayubi E, Rafiee M, Bashirian M. The effect of the art therapy interventions on depression symptoms among older adults: a meta-analysis of controlled clinical trials. J Geriatr Psychiatry Neurol 2023;36:185-92. https://doi.org/10.1177/08919887221130264

48.Pant U, Frishkopf M, Park T, Norris CM, Papathanassoglou E. A neurobiological framework for the therapeutic potential of music and sound interventions for post-traumatic stress symptoms in critical illness survivors. Inter J Environm Res Public Health 2022;19:3113. https://doi.org/10.3390/ijerph19053113

49.Lee E, Faber J, Bowles K. A review of trauma specific treatments (TSTs) for post-traumatic stress disorder (PTSD). Clin Soc Work J 2022;50:147-59. https://doi.org/10.1007/s10615-021-00816-w

50.Mountcastle VB. An organizing principle for cerebral function: The unit module and the distributed system. MIT Press 1978; p.21-42. https://www.semanticscholar.org/paper/An-organizing-principle-for-cerebral-function-%3A-the-Mountcastle/4fae92cf350729bc89172e6afef7ebda01e99034

Downloads

Publicado

2025-09-02

Edição

Seção

Artigos Originais

Como Citar

1.
Martinelli Oliveira PH, Souza de Faria R, Magalhães Vitorino L, Ferreira Trzesniak CM, Camargo Preto J, do Vale Miranda L, et al. Estudo comparativo entre música clássica e outras músicas sobre a extinção do medo em rato. Rev Neurocienc [Internet]. 2º de setembro de 2025 [citado 18º de dezembro de 2025];33:1-29. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/20347