A eletroestimulação em pessoas com lesão medular melhora a locomoção? Revisão Sistemática
DOI:
https://doi.org/10.34024/rnc.2025.v33.20131Palavras-chave:
Reabilitação, Lesão da Medula Espinhal, Estimulação Elétrica, Marcha, Pessoa com Deficiência FísicaResumo
Introdução. A Lesão da Medula Espinhal (LME) resulta na interrupção da comunicação nervosa das vias sensoriais e/ou motoras que conectam a medula com a periferia do corpo comprometendo a locomoção. A estimulação elétrica funcional (EEF) realizada nos membros inferiores apresenta potencial para promover melhorias na locomoção em pessoas com LME. Objetivos. Identificar se a utilização da EEF em pessoas com LME melhora aspectos relacionados à locomoção, bem como os parâmetros utilizados. Método. Esta revisão sistemática seguiu o protocolo PRISMA e foi realizada nas bases de dados MEDLINE, PEDro, Scielo e Science Direct através de descritores em inglês. A qualidade metodológica foi avaliada pela Physiotherapy Evidence Database (PEDro). Foram obtidos 280 artigos, publicados entre 1980 e 2023, porém após triagem, apenas 11 foram incluídos. Resultados. Há muita heterogeneidade entre as amostras e número de participantes, o que limita o uso de análises mais robustas, sendo assim, os resultados sugerem que todos os estudos apresentaram melhora em aspectos clínicos de avaliação, sendo apenas uma melhora estatisticamente significativa em seis deles, de modo que em um não houve superioridade para os desfechos quanto ao uso do FES. Os instrumentos mais utilizados nas análises compreenderam a velocidade da marcha e o teste de caminhada de 10 m. Quanto aos parâmetros da EEF, variaram de 20 a 50Hz de frequência e de 200 a 500μs de largura de pulso. Conclusão. A EEF pode contribuir para a melhora da VM em indivíduos com LME, especialmente quando associada ao treino locomotor com suporte de peso.
Métricas
Referências
1.Anjum A, Yazid MD, Daud MF, Idris J, Ng AMH, Selvi NA, et al. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Inter J Mol Sci 2020;21:7533. https://doi.org/10.3390/ijms21207533
2.Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019;10:282. https://doi.org/10.3389/fneur.2019.00282
3.Guan B, Anderson D, Chen L, Feng S, Zhou H. Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. BMJ Open 2023;13:e075049–9. https://doi.org/10.1136/bmjopen-2023-075049
4.Nistor-Cseppento CD, Gherle A, Negrut N, Bungau SG, Sabau AM, Radu AF, et al. The Outcomes of Robotic Rehabilitation Assisted Devices Following Spinal Cord Injury and the Prevention of Secondary Associated Complications. Medicina 2022;58:1447. https://doi.org/10.3390/medicina58101447
5.del Valle AE, del Busto JEB, Belisón AS, Cuenca-Zaldívar JN, Martínez-Pozas O, Martínez-Lozano P, et al. Effects of a Gait Training Program on Spinal Cord Injury Patients: A Single-Group Prospective Cohort Study. J Clin Med 2023;12:7208. https://doi.org/10.3390/jcm12237208
6.Hofer AS, Schwab ME. Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation. Curr Opin Neurol 2019;32:828-35. https://doi.org/10.1097/WCO.0000000000000750
7.Edwards DJ, Forrest G, Cortes M, Weightman MM, Sadowsky C, Chang SH, et al. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Spinal Cord 2022;60:522-32. https://doi.org/10.1038/s41393-022-00751-8
8.Street T, Singleton C. A clinically meaningful training effect in walking speed using functional electrical stimulation for motor-incomplete spinal cord injury. J Spinal Cord Med 2017;41:361-6. https://doi.org/10.1080/10790268.2017.1392106
9.Mayer L, Warring T, Agrella S, Rogers HL, Fox EJ. Effects of Functional Electrical Stimulation on Gait Function and Quality of Life for People with Multiple Sclerosis Taking Dalfampridine. Inter J MS Care 2015;17:35-41. https://doi.org/10.7224/1537-2073.2013-033
10.Melo PL, Silva MT, Martins JM, Newman DJ. Technical developments of functional electrical stimulation to correct drop foot: Sensing, actuation and control strategies. Clin Biomech 2015;30:101-13. https://doi.org/10.1016/j.clinbiomech.2014.11.007
11.Craven BC, Giangregorio LM, Alavinia SM, Blencowe LA, Desai N, Hitzig SL, et al. Evaluating the efficacy of functional electrical stimulation therapy assisted walking after chronic motor incomplete spinal cord injury: effects on bone biomarkers and bone strength. J Spinal Cord Med 2017;40:748-58. https://doi.org/10.1080/10790268.2017.1368961
12.Gurcay E, Karaahmet OZ, Cankurtaran D, Nazlı F, Umay E, Güzel Ş, et al. Functional electrical stimulation cycling in patients with chronic spinal cord injury: a pilot study. Inter J Neurosci 2022;132:421-7. https://doi.org/10.1080/00207454.2021.1929212
13.Ma DN, Zhang XQ, Ying J, Chen ZJ, Li LX. Efficacy and safety of 9 nonoperative regimens for the treatment of spinal cord injury: A network meta-analysis. Medicine 2017;96:e8679. https://doi.org/10.1097/MD.0000000000008679
14.Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arc Phys Med Rehab 2001;82:818-24. https://doi.org/10.1053/apmr.2001.23752
15.Johnston TE, Finson RL, Smith BT, Bonaroti DM, Mulcahey MJ. Technical Perspective Functional Electrical Stimulation For Augmented Walking In Adolescents With Incomplete Spinal Cord Injury. J Spinal Cord Med 2003;26:390-400. https://doi.org/10.1080/10790268.2003.11753711
16.Johnston TE, Betz RR, Smith BT, Mulcahey MJ. Implanted functional electrical stimulation: an alternative for standing and walking in pediatric spinal cord injury. Spinal Cord 2003;41:144-52. https://doi.org/10.1038/sj.sc.3101392
17.Granat MH, Ferguson ACB, Andrews BJ, Delargy M. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury - observed benefits during gait studies. Spinal Cord 1993;31:207-15. https://doi.org/10.1038/sc.1993.39
18.Gallien P, Brissot R, Eyssette M, Tell L, Barat M, Wiart L, et al. Restoration of gait by functional electrical stimulation for spinal cord injured patients. Spinal Cord 1995;33:660-4. https://doi.org/10.1038/sc.1995.138
19.Granat M, Keating JF, Smith ACB, Delargy M, Andrews BJ. The use of functional electrical stimulation to assist gait in patients with incomplete spinal cord injury. Disabil Rehab 1992;14:93-7. https://doi.org/10.3109/09638289209167078
20.Tefertiller C, Gerber D. Step Ergometer Training Augmented With Functional Electrical Stimulation in Individuals With Chronic Spinal Cord Injury: A Feasibility Study. Artif Org 2017;41:E196-202. https://doi.org/10.1111/aor.13060
21.Kapadia N, Masani K, Craven BC, Giangregorio LM, Hitzig SL, Richards K, Popovic MR. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency. J Spinal Cord Med 2014;37:511-24. https://doi.org/10.1179/2045772314Y.0000000263
22.Stampacchia G, Olivieri M, Rustici A, D’Avino C, Gerini A, Mazzoleni S. Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study. Spinal Cord 2020;58:988-97. https://doi.org/10.1038/s41393-020-0454-2
23.Hesse S, Werner C, Bardeleben A. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury. Spinal Cord 2004;42:346-52. https://doi.org/10.1038/sj.sc.3101595
24.Lam T, Eng J, Wolfe D, Hsieh J, Whittaker M. A Systematic Review of the Efficacy of Gait Rehabilitation Strategies for Spinal Cord Injury. Topics Spinal Cord Inj Rehab 2007;13:32-57. https://doi.org/10.1310/sci1301-32
25.Stein RB. Functional Electrical Stimulation after Spinal Cord Injury. J Neurotr 1999;16:713-7. https://doi.org/10.1089/neu.1999.16.713
26.Tajali S, Iwasa SN, Sin V, Atputharaj S, Kapadia ND, Musselman KE, et al. The Orthotic Effects of Different Functional Electrical Stimulation Protocols on Walking Performance in Individuals with Incomplete Spinal Cord Injury: A Case Series. Topics Spinal Cord Inj Rehab 2023;29(Suppl):142-52. https://doi.org/10.46292/sci23-00021S
27.Patathong T, Klaewkasikum K, Woratanarat P, Rattanasiri S, Anothaisintawee T, Woratanarat T, et al. The efficacy of gait rehabilitations for the treatment of incomplete spinal cord injury: a systematic review and network meta-analysis. J Orthop Surg Res 2023;18:60. https://doi.org/10.1186/s13018-022-03459-w
28.Willi R, Widmer M, Merz N, Bastiaenen CHG, Zörner B, Bolliger M. Validity and reliability of the 2-minute walk test in individuals with spinal cord injury. Spinal Cord 2022:61:15-21. https://doi.org/10.1038/s41393-022-00847-1
29.Amatachaya S, Naewla S, Srisim K, Arrayawichanon P, Siritaratiwat W. Concurrent validity of the 10-meter walk test as compared with the 6-minute walk test in patients with spinal cord injury at various levels of ability. Spinal Cord 2014;52:333-6. https://doi.org/10.1038/sc.2013.171
30.Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol 1995;37:574-82. https://doi.org/10.1002/ana.410370506
31.Postans N, Hasler P, Granat H, Maxwell J. Functional electric stimulation to augment partial weight-bearing supported treadmill training for patients with acute incomplete spinal cord injury: A pilot study. Arc Phys Med Rehab 2004;85:604-10. https://doi.org/10.1016/j.apmr.2003.08.083
32.Yang F-A, Chen S-C, Chiu J-F, Shih Y-A, Liou T-S, Escorpizo R, et al. Body weight-supported gait training for patients with spinal cord injury: a network meta-analysis of randomised controlled trials. Sci Rep 2022;12:19262. https://doi.org/10.1038/s41598-022-23873-8
33.Linder S. Functional electrical stimulation to enhance cough in quadriplegia. Chest 1993;103:166-9. https://doi.org/10.1378/chest.103.1.166
34.Segers J, Hermans G, Bruyninckx F, Meyfroidt G, Langer D, Gosselink R. Feasibility of neuromuscular electrical stimulation in critically ill patients. J Critic Care 2014;29:1082-8. https://doi.org/10.1016/j.jcrc.2014.06.024
35.Reinhardt J, Ballert C, Brinkhof MWG, Post MWM. Perveceid impact of environmental barriers on participation among people living with spinal cord injury in switzerland. J Rehab Med 2016;48:210-8. https://doi.org/10.2340/16501977-2048
36.Jazayeri SB, Maroufi SF, Mohammadi E, Ohadi MAD, Hagen E-M, Chalangari M, et al. Incidence of traumatic spinal cord injury worldwide: A systematic review, data integration, and update. World Neurosurg 2023;18:100171. https://doi.org/10.1016/j.wnsx.2023.100171
37.Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, et al. Traumatic Spinal Injury: Global Epidemiology and Worldwide. World Neurosurg 2018;113:345-63. https://doi.org/10.1016/j.wneu.2018.02.033
38.Arriola M, López L, Camarot T. Clinical and epidemiological profile and functionality achieved in patients with traumatic spinal cord injury assisted at the Rehabilitation and Physical Medicine Service at the University Hospital. Rev Méd Urug 2021;37:2. https://doi.org/10.29193/rmu.37.2.7
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Renan Maués dos Santos, Beatriz Brito Gomes, Bruna Castro Malato, Brenno Ribeiro Braz, Hugo Miranda de Souza Coroa, Anselmo de Athayde Costa e Silva, Suellen Alessandra Soares de Moraes

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Como Citar
Aprovado 2025-04-30
Publicado 2025-05-20
