Aplicações da inteligência artificial no câncer oral: uma revisão sistemática

Autores

DOI:

https://doi.org/10.34024/rnc.2025.v33.19930

Palavras-chave:

Câncer Oral, Inteligência artificial, Diagnóstico

Resumo

Introdução. O diagnóstico preciso e antecipado do câncer oral permite não apenas a escolha e aplicação correta do tratamento, como também a intervenção em estágios iniciais da doença, o que contribui diretamente para um bom prognóstico do paciente. Diante desse cenário, as tecnologias se apresentam como aliadas importantes para a melhoria do diagnóstico e do tratamento dessa condição. Objetivo. Identificar as aplicações da Inteligência Artificial no processo de diagnóstico e tratamento de lesões orais malignas. Método. Esta pesquisa trata-se de uma revisão sistemática que seguiu as diretrizes do protocolo PRISMA. A busca foi realizada nas bases de dados PubMed, BVS, Science Direct e Scopus e a triagem inicial teve como base a leitura de título e resumo dos artigos encontrados. Os estudos remanescentes desta etapa foram selecionados para leitura completa no sentido de verificar a adequação com os critérios de inclusão desta revisão. Por fim, os estudos selecionados para inclusão passaram pela análise do risco de viés. Resultados. Foram incluídos 19 estudos nos quais os campos mais analisados foram machine learning, artificial neural network e deep-learning e as aplicações mais analisadas foram diagnóstico histopatológico e previsão de diagnóstico. Conclusão. Embora tenha sido possível identificar as aplicações dos modelos de inteligência artificial para a finalidade estudada, fica evidente que estudos com maior qualidade de evidência precisam ser produzidos para comprovação da eficácia dessas aplicações.

Métricas

Carregando Métricas ...

Referências

1.Inchigolo F, Santacroce L, Ballini A, Topi S, Dipalma G, Haxhirexha K, et al. Oral Cancer: A Historical Review. Int J Environ Res Public Health 2020;17:1-24. https://doi.org/10.3390/ijerph17093168

2.Abati S, Bramati C, Bondi S, Lissoni A, Trimarchi M. Oral Cancer and Precancer: A Narrative Review on the Relevance of Early Diagnoses. Int J Environ Res Public Health 2020;17:1-14. https://doi.org/10.3390/ijerph17249160

3.Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncolol 2009;45:309-16. https://doi.org/10.1016/j.oraloncology.2008.06.002

4.McCullough MJ, Prasd G, Farah CS. Oral mucosal malignancy and potentially malignant lesions: An update on the epidemiology, risk factors, diagnosis and management. Aust Dent J 2010;55:61-5. https://doi.org/10.1111/j.1834-7819.2010.01200.x

5.Chaturvedi AK, Udaltsova N, Engels EA, Katzel JA, Yanik EL, Katki HA, et al. Oral Leukoplakia and Risk of Progress to Oral Cancer: A Population-Based Cohort Study. J Natl Cancer Inst 2020;112:1047-54. https://doi.org/10.1093/jnci/djz238

6.Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res 2020;99:769-74. https://doi.org/10.1177/0022034520915714

7.Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: A scoping review. J Dent 2019;91:103226. https://doi.org/10.1016/j.jdent.2019.103226

8.Ilhan B, Lin K, Guneri P, Wilder-Smith P. Improving Oral Cancer Outcomes with Imaging and Artificial Intelligence. J Dent Res 2020;99:241-8. https://doi.org/10.1177/0022034520902128

9.Weinstein GS, O’Malley Jr BW, Snyder W, Sherman E, Quon H. Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg 2007;133:1220-6. https://doi.org/10.1001/archotol.133.12.1220

10.Lawson G, Matar N, Remacle M, Jamart J, Backy V. Transoral robotic surgery for the management of head and neck tumors: learning curve. Eur Arch Otorhinolaryngol 2011;268:1795-801. https://doi.org/10.1007/s00405-011-1537-7

11.Chang S, Abdul-Kareem S, Merican AF, Zain RB. Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinform 2013;170:1-15. https://doi.org/10.1186/1471-2105-14-170

12.Alsmadi MK. A hybrid Fuzzy C-Means and Neutrosophic for jaw lesions segmentation. Ain Shams Enginee J 2018;9:697-706. https://doi.org/10.1016/j.asej.2016.03.016

13.Ariji Y, Fukuda M, Kise Y, Nozawa M, Yanashita Y, Fujita H, et al. Contrast-enhanced CT image assessment of cervical lymph node metastasis in oral cancer patients using a deep learning system of artificial intelligence. Oral Surg Oral Med Oral Pathol Oral Radiol 2019;127:458-63. https://doi.org/10.1016/j.oooo.2018.10.002

14.Alabi RO, Elmusrati M, Sawazaki-Calone I, Kowalski LP, Haglund C, Coletta RD, et al. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer. Int J Med Inform 2020;136:1-8. https://doi.org/10.1016/j.ijmedinf.2019.104068

15.Bur AM, Holcomb A, Goodwin S, Woodroof J, Karadaghy O, Shnayder Y, et al. Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma. Oral Oncol 2019;92:20-5. https://doi.org/10.1016/j.oraloncology.2019.03.011

16.Rahman TY, Mahanta LB, Das AK, Sarma JD. Histopathological imaging database for oral cancer analysis. Data Brief 2020;29:1-5. https://doi.org/10.1016/j.dib.2020.105114

17.Chu CS, Lee NP, Adeoye J, Thomson P, Choi S. Machine learning and treatment outcome prediction for oral cancer. J Oral Pathol Med 2020;49:977-85. https://doi.org/10.1111/jop.13089

18.McRae MP, Modak SS, Simmons GW, Trochesset DA, Kerr AR, Thornhill MH, et al. Point-of-Care Oral Cytology Tool for the Screening and Assessment of Potentially Malignant Oral Lesions. Cancer Cytophatol 2020;128:207-20. https://doi.org/10.1002/cncy.22236

19.Jubair F, Al-Karadsheh O, Malamos D, Al Mahdi S, Saad Y, Hassona Y. A novel lightweight deep convolutional neural network for early detection of oral cncer. Oral Dis 2022;28:1123-30. https://doi.org/10.1111/odi.13825

20.Musulin J, Štifanić D, Zulijani A, Ćabov T, Dekanić A, Car Z. An Enhanced Histopathology Analysis: An AI-Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue. Cancers (Basel) 2021;13:1-21. https://doi.org/10.3390/cancers13081784

21.Thiem DGE, Römer P, Gielisch M, Al-Nawas B, Schlüter M, Plaß B, et al. Hyperspectral imaging and artificial intelligence to detect oral malignancy – part 1 - automated tissue classification of oral muscle, fat and mucosa using a lightweight 6-layer deep neural network. Head Face Med 2021;17:1-9. https://doi.org/10.1186/s13005-021-00292-0

22.D’Aviero A, Re A, Catucci F, Piccari D, Votta C, Piro D, et al. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center. Int J Environ Res Public Health 2022;19:1-9. https://doi.org/10.3390/ijerph19159057

23.Deif MA, Attar H, Amer A, Elhaty IA, Khosravi MR, Solyman AAA. Diagnosis of Oral Squamous Cell Carcinoma Using Deep Neural Networks and Binary Particle Swarm Optimization on Histopathological Images: An AIoMT Approach. Comput Intell Neurosci 2022;2022:1-13. https://doi.org/10.1155/2022/6364102

24.He Z, Mao Y, Lu S, Tan L, Xiao J, Tan P, et al. Machine learning–based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study. Eur Radiol 2022;32:8099-110. https://doi.org/10.1007/s00330-022-08943-9

25.Shaban M, Raza SEA, Hassan M, Jamshed A, Mushtaq S, Loya A, et al. A digital score of tumour-associated stroma infiltrating lymphocytes predicts survival in head and neck squamous cell carcinoma. J Pathol 2022;256:174-85. https://doi.org/10.1002/path.5819

26.Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P, Vicharueang S. AI-based Analysis of Oral Lesions Using Novel Deep Convolutional Neural Networks for Early Detection of Oral Cancer. PLoS One 2022;17:1-14. https://doi.org/10.1371/journal.pone.0273508

27.Kawamura K, Lee C, Yoshikawa T, Hani A, Usami Y, Toyosawa S, et al. Prediction of cervical lymph node metastasis from immunostained specimens of tongue cancer using a multilayer perceptron neural network. Cancer Med 2023;12:5312-22. https://doi.org/10.1002/cam4.5343

28.Araújo ALD, Silva VM, Moraes MC, Amorim HA, Fonseca FP, Sant’Ana MSP, et al. The use of deep learning state-of-the-art architectures for oral epithelial dysplasia grading: A comparative appraisal. J Oral Pathol Med 2023;52:980-7. https://doi.org/10.1111/jop.13477

29.Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data. JAMA Inter Med 2018;178:1544-7. https://doi.org/10.1001/jamainternmed.2018.3763

30.Mörch CM, Atsu S, Cai W, Li X, Madathil SA, Liu X, et al. Artificial Intelligence and Ethics in Dentistry: A Scoping Review. J Dent Res 2021;100:1452-60. https://doi.org/10.1177/00220345211013808

Downloads

Publicado

2025-09-12

Edição

Seção

Revisão Sistemática

Como Citar

1.
Ferreira LGS, Bezerra AB, Pedreira EN. Aplicações da inteligência artificial no câncer oral: uma revisão sistemática. Rev Neurocienc [Internet]. 12º de setembro de 2025 [citado 18º de dezembro de 2025];33:1-20. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/19930