Alterações epigenéticas e declínio cognitivo no envelhecimento: revisão integrativa

Autores

DOI:

https://doi.org/10.34024/rnc.2025.v33.19832

Palavras-chave:

Envelhecimento, Declínio cognitivo, Epigenética, Doença de Alzheimer, Doença de Parkinson

Resumo

Objetivo. Investigar, por meio de uma revisão integrativa, quais alterações epigenéticas estão associadas ao declínio cognitivo relacionado ao envelhecimento. Método. Trata-se de um estudo de revisão integrativa da literatura.  Foram utilizadas as bases de dados PubMed e LILACS, com descritores aging, epigenetic e cognition em conjunto com o operador AND. Foram incluídos artigos originais com humanos ou animais, publicados nos últimos 10 anos em inglês, português e espanhol. A análise dos artigos envolveu a análise de títulos e resumos para determinar relevância, seguida pela leitura integral para coleta do tipo de estudo, tipo de modificação genética e a alteração cognitiva observada. Resultados. Nos resultados deste estudo, foram analisados 20 artigos científicos que investigam as influências epigenéticas na cognição, com ênfase nas alterações de acetilação e metilação do DNA. A avaliação indicou que a acetilação está fortemente associada à melhoria da cognição, favorecendo a expressão gênica e otimizando os processos neurais envolvidos na memória e no aprendizado. Por outro lado, a metilação foi amplamente vinculada ao declínio cognitivo, frequentemente relacionada à inibição de genes cruciais para a preservação das funções cerebrais e ao avanço de doenças neurodegenerativas. Conclusão. Conclui-se que as alterações epigenéticas desempenham um papel essencial na regulação dos processos cognitivos, apresentando impactos variados conforme o tipo de modificação. Esses resultados destacam a relevância de estratégias terapêuticas direcionadas à modulação da acetilação e da metilação, apontando seu potencial como abordagem para prevenir ou reduzir o declínio cognitivo, particularmente em situações relacionadas ao envelhecimento ou a doenças neurodegenerativas.

Métricas

Carregando Métricas ...

Referências

1.Hayward MD, Majmundar MK (eds.). Future Directions for the Demography of Aging. Washington: National Academies Press; 2018. https://doi.org/10.17226/25064

2.Gondim AS, Coelho Filho JM, Cavalcanti AA, Roriz Filho JS, Nogueira CB, Peixoto Junior AA, et al. Prevalence of functional cognitive impairment and associated factors in Brazilian community-dwelling older adults. Dement Neuropsychol 2017;11:32-9. https://doi.org/10.1590/1980-57642016dn11-010006

3.World Health Organization. Dementia (Internet). World Health Organization. 2025 (acessado em 21/09/2024). Disponível em: https://www.who.int/news-room/fact-sheets/detail/dementia

4.Hamilton JP. Epigenetics: principles and practice. Dig Dis 2011;29:130-5. https://doi.org/10.1159/000323874

5.Liu X, Jiao B, Shen L. The Epigenetics of Alzheimer’s Disease: Factors and Therapeutic Implications. Front Genet 2018;30:9. https://doi.org/10.3389/fgene.2018.00579

6.Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol 2021;20:484-96. https://doi.org/10.1016/s1474-4422(21)00066-1

7.Pavlou MAS, Outeiro TF. Epigenetics in Parkinson’s Disease. Adv Exp Med Biol 2017;978:363-90. https://doi.org/10.1007/978-3-319-53889-1_19

8.Souza MT, Silva MD, Carvalho R. Revisão integrativa: o que é e como fazer. Einstein 2010;8:102-6. https://doi.org/10.1590/S1679-45082010RW1134

9.Beydoun MA, Shaked D, Tajuddin SM, Weiss J, Evans MK, Zonderman AB. Accelerated epigenetic age and cognitive decline among urban-dwelling adults. Neurology 2019;94:e613-25. https://doi.org/10.1212/WNL.0000000000008756

10.Gutman D, Rivkin E, Fadida A, Sharvit L, Hermush V, Rubin E, et al. Exceptionally Long-Lived Individuals (ELLI) Demonstrate Slower Aging Rate Calculated by DNA Methylation Clocks as Possible Modulators for Healthy Longevity. Int J Mol Sci 2020;21:615. https://doi.org/10.3390/ijms21020615

11.Hüls A, Robins C, Conneely KN, Edgar R, De Jager PL, Bennett DA, et al. Brain DNA Methylation Patterns in CLDN5 Associated With Cognitive Decline. Biol Psychiatr 2022;91:389-98. https://doi.org/10.1016/j.biopsych.2021.01.015

12.Puglia MH, Lynch ME, Nance MG, Connelly JJ, Morris JP. DNA methylation of the oxytocin receptor interacts with age to impact neural response to social stimuli. Front Aging Neurosci 2023;9:15. https://doi.org/10.3389/fnagi.2023.1252478

13.Karlsson IK, Ericsson M, Wang Y, Jylhävä J, Hägg S, Dahl Aslan AK, et al. Epigenome-wide association study of level and change in cognitive abilities from midlife through late life. Clin Epigenetics 2021;13:85. https://doi.org/10.1186/s13148-021-01075-9

14.Liu J, Zhao W, Ware EB, Turner ST, Mosley TH, Smith JA. DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Med Genomics 2018;11:43. https://doi.org/10.1186/s12920-018-0363-9

15.Puigoriol-Illamola D, Martínez-Damas M, Griñán-Ferré C, Pallàs M. Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice. International J Mol Sci 2020;21:1154. https://doi.org/10.3390/ijms21031154

16.Starnawska A, Tan Q, McGue M, Mors O, Børglum AD, Christensen K, et al. Epigenome-Wide Association Study of Cognitive Functioning in Middle-Aged Monozygotic Twins. Front Aging Neurosci 2017;9:413. https://doi.org/10.3389/fnagi.2017.00413

17.Suarez A, Lahti J, Czamara D, Lahti‐Pulkkinen M, Girchenko P, Andersson S, et al. The epigenetic clock and pubertal, neuroendocrine, psychiatric, and cognitive outcomes in adolescents. Clin Epigen 2018;10:96. https://doi.org/10.1186/s13148-018-0528-6

18.Loeffler-Wirth H, Hopp L, Schmidt M, Zakharyan R, Arakelyan A, Binder H. The Transcriptome and Methylome of the Developing and Aging Brain and Their Relations to Gliomas and Psychological Disord Cells 2022;11:362. https://doi.org/10.3390/cells11030362

19.Vyas CM, Sadreyev RI, Gatchel JR, Kang JH, Reynolds CF, Mischoulon D, et al. Pilot Study of Second-Generation DNA Methylation Epigenetic Markers in Relation to Cognitive and Neuropsychiatric Symptoms in Older Adults. J Alz Dis 2023;93:1563-75. https://doi.org/10.3233/JAD-230093

20.Raffington L, Schwaba T, Aikins M, Richter D, Wagner GG, Harden KP, et al. Associations of socioeconomic disparities with buccal DNA-methylation measures of biological aging. Clin Epigen 2023;15:70. https://doi.org/10.1186/s13148-023-01489-7

21.Vyas CM, Hazra A, Chang SC, Qiu W, Reynolds CF, Mischoulon D, et al. Pilot study of DNA methylation, molecular aging markers and measures of health and well-being in aging. Transl Psych 2019;9:1-9. https://doi.org/10.1038/s41398-019-0446-1

22.Yannatos I, Stites SD, Boen C, Xie SX, Brown RT, McMillan CT. Epigenetic age and socioeconomic status contribute to racial disparities in cognitive and functional aging between Black and White older Americans. MedRxiv 2023;2023.09.29.23296351. https://doi.org/10.1101/2023.09.29.23296351

23.Fraga I, Weber C, Galiano WB, Iraci L, Wohlgemuth M, Morales G, et al. Effects of a multimodal exercise protocol on functional outcomes, epigenetic modulation and brain-derived neurotrophic factor levels in institutionalized older adults: a quasi-experimental pilot study. Neural Regen Res 2021:16:2479-85. https://doi.org/10.4103/1673-5374.313067

24.Feng Q, Chai GS, Wang ZH, Hu Y, Sun DS, Li XG, et al. Knockdown of pp32 Increases Histone Acetylation and Ameliorates Cognitive Deficits. Front Aging Neurosci 2017;9:104. https://doi.org/10.3389/fnagi.2017.00104

25.Keiser AA, Dong TN, Kramár EA, Butler CW, Chen S, Matheos DP, et al. Specific exercise patterns generate an epigenetic molecular memory window that drives long-term memory formation and identifies ACVR1C as a bidirectional regulator of memory in mice. Nature Comm 2024;15:3836. https://doi.org/10.1038/s41467-024-47996-w

26.Wu W, Alexander JS, Booth JL, Miller CA, Metcalf JP, Drevets DA. Influenza virus infection exacerbates gene expression related to neurocognitive dysfunction in brains of old mice. Immunity Ageing 2024;21:39. https://doi.org/10.1186/s12979-024-00447-y

27.Giménez-Llort L, Santana-Santana M, Bayascas JR. The Impact of the PI3K/Akt Signaling Pathway in Anxiety and Working Memory in Young and Middle-Aged PDK1 K465E Knock-In Mice. Front Behav Neurosci 2020;14:61. https://doi.org/10.3389/fnbeh.2020.00061

28.Stephan Y, Sutin AR, Luchetti M, Aschwanden D, Terracciano A. The Mediating Role of Biomarkers in the Association Between Subjective Aging and Episodic Memory. J Gerontol Psychol Sci Soc Sci 2023;78:242-52. https://doi.org/10.1093/geronb/gbac155

29.Rivas MP, Teixeira ACB, Krepischi ACV. Epigenética: conceito, mecanismos e impacto em doenças humanas. Gen Esc 2019;14:14-25. https://doi.org/10.55838/1980-3540.ge.2019.311

30.Hosseini S, Wilk E, Michaelsen-Preusse K, Gerhauser I, Baumgärtner W, Geffers R, et al. Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. J Neurosci 2018:38:3060-80. https://doi.org/10.1523/jneurosci.1740-17.2018

31.Soto-Palma C, Niedernhofer LJ, Faulk CD, Dong X. Epigenetics, DNA damage, and aging. J Clin Invest 2022;132:e158446. https://doi.org/10.1172/JCI158446

32.Alegría-Torres JA, Baccarelli A, Bollati V. Epigenetics and Lifestyle. Epigenomics 2011;3:267-77. https://doi.org/10.2217/epi.11.22

33.Liu C, Jiao C, Wang K, Yuan N. DNA methylation and psychiatric disorders. Prog Mol Biol Transl Sci 2018;157:175-232. https://doi.org/10.1016/bs.pmbts.2018.01.006

34.Gampawar P, Veeranki SPK, Petrovic KE, Schmidt R, Schmidt H. Epigenetic age acceleration is related to cognitive decline in the elderly: results of the Austrian Stroke Prevention Study. Transl Psychiatry 2025;15:52. https://doi.org/10.1111/pcn.13793

35.Peixoto L, Abel T. The Role of Histone Acetylation in Memory Formation and Cognitive Impairments. Neuropsychopharmacol 2012;38:62-76. https://doi.org/10.1038/npp.2012.86

36.Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC, et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Intern J Neuropsychopharmacol 2008:11:1123–34. https://doi.org/10.1017/S1461145708009024

37.Soles LV, Shi Y. Crosstalk Between mRNA 3’-End Processing and Epigenetics. Front Gen 2021;12:637705. https://doi.org/10.3389/fgene.2021.637705

38.Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 2017;80:443-56. https://doi.org/10.1016/j.neubiorev.2017.06.012

39.Balnis J, Madrid A, Hogan KJ, Drake LA, Adhikari A, Vancavage R, et al. Persistent blood DNA methylation changes one year after SARS-CoV-2 infection. Clin Epigen 2022;14:94. https://doi.org/10.1186/s13148-022-01313-8

Downloads

Publicado

2025-06-18

Edição

Seção

Artigos de Revisão

Como Citar

1.
Florêncio Bezerra Leite T, Melo de Souza C. Alterações epigenéticas e declínio cognitivo no envelhecimento: revisão integrativa. Rev Neurocienc [Internet]. 18º de junho de 2025 [citado 15º de dezembro de 2025];33:1-20. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/19832