Inteligência artificial na previsão de desfechos e planejamento neurocirúrgico
DOI:
https://doi.org/10.34024/rnc.2025.v33.19739Palavras-chave:
Inteligência artificial, Neurocirurgia, Machine Learning, PlanejamentoResumo
Introdução. A metástase de tumores sólidos é comum em neurocirurgia e seu tratamento enfrenta desafios como a radioresistência e a dificuldade de acessar áreas centrais do cérebro. Tecnologias avançadas, especialmente com aprendizado de máquina, têm melhorado a precisão diagnóstica e preditiva na neurocirurgia, mas há lacunas na literatura sobre sua aplicação. Objetivo. A presente revisão tem por objetivo analisar o potencial das técnicas de Machine Learning (ML) nos processos neurocirúrgicos. Método. Foram coletados dados das bases de dados PubMed, Scopus e Web of Science, nos quais foram utilizados os descritores Brain Neoplasm, Brain Tumor, Machine Learning e Neurosurgical Procedure. Resultados. Modelos de ML recentes mostraram alta precisão na previsão de resposta terapêutica e progressão de metástases, superando métodos tradicionais, especialmente quando integrados a dados clínicos e radiômicos. Ferramentas automatizadas também têm avançado na segmentação de tumores, embora melhorias ainda sejam necessárias na detecção de pequenas lesões. O ML tem se destacado no monitoramento longitudinal, otimizando análises volumétricas e decisões clínicas. Na navegação cirúrgica, acelera a dissecção tumoral e aprimora a identificação de tumores, com grande potencial para personalizar tratamentos de forma precisa e individualizada. Conclusão. A exploração das aplicações de técnicas de ML na neurocirurgia, focando no tratamento de tumores cerebrais, revelou um panorama promissor sobre como o ML pode transformar o campo da neurociência, desde o planejamento até a execução de intervenções cirúrgicas.
Métricas
Referências
Thon N, Karschnia P, Baumgarten LV, Niyazi M, Steinbach JP, Tonn JC. Neurosurgical interventions for cerebral metastases of solid tumors. Dtsch Arztebl Int 2023;120:162-9. https://doi.org/10.3238/arztebl.m2022.0410
Galicich J. Surgery of malignant brain tumors. Semin Neurol 1981;1:159-68. https://doi.org/10.1055/s-2008-1063894
Boaro A, Azzari A, Basaldella F, Nunes S, Feletti A, Bicego M, et al. Machine learning allows expert level classification of intraoperative motor evoked potentials during neurosurgical procedures. Comput Biol Med 2024;180:109032. https://doi.org/10.1016/j.compbiomed.2024.109032
Rezai AR. The Evolution of Technology and Neurosurgery. Neurosurgery 2014;61:66-8. https://doi.org/10.1227/neu.0000000000000419
Rennert RC, Santiago-Dieppa DR, Figueroa J, Sanai N, Carter BS. Future directions of operative neuro-oncology. J Neuro Oncol 2016;130:377-82. https://doi.org/10.1007/s11060-016-2180-3
Deo RC. Machine Learning in Medicine. Circulation 2015;132:1920-30. https://doi.org/10.1161/circulationaha.115.001593
Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol 2020;9:14. https://doi.org/10.1167/tvst.9.2.14
Buchlak QD, Esmaili N, Leveque JC, Farrokhi F, Bennett C, Piccardi M, et al. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurgical Ver 2019;43:1235-53. https://doi.org/10.1007/s10143-019-01163-8
Zhao J, Vaios E, Wang Y, Yang Z, Cui Y, Reitman ZJ, et al. Dose-Incorporated deep ensemble learning for improving brain metastasis SRS outcome prediction. Int J Radiat Oncol Biol Phys 2024;120:603-13. https://doi.org/10.1016/j.ijrobp.2024.04.006
Lee W, Hong J, Lin Y, Lu Y, Hsu Y, Lee C, et al. Federated learning: a cross‐institutional feasibility study of deep learning based intracranial tumor delineation framework for stereotactic radiosurgery. J Magn Reson Imaging 2023;59:1967-75. https://doi.org/10.1002/jmri.28950
Cho SJ, Cho W, Choi D, Sim G, Jeong SY, Baik SH, et al. Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data. Sci Rep 2024;14:11085. https://doi.org/10.1038/s41598-024-60781-5
Jeong H, Park JE, Kim N, Yoon SK, Kim HS. Deep learning-based detection and quantification of brain metastases on black-blood imaging can provide treatment suggestions: a clinical cohort study. Eur Radiol 2023;34:2062-71. https://doi.org/10.1007/s00330-023-10120-5
Hammer Y, Najjar W, Kahanov L, Joskowicz L, Shoshan Y. Two is better than one: longitudinal detection and volumetric evaluation of brain metastases after Stereotactic Radiosurgery with a deep learning pipeline. J Neuro Oncol 2024;166:547-55. https://doi.org/10.1007/s11060-024-04580-y
Du P, Liu X, Xiang R, Lv K, Chen H, Liu W, et al. Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases. Eur Radiol 2023;33:8925-35. https://doi.org/10.1007/s00330-023-09930-4
DeVries DA, Tang T, Albweady A, Leung A, Laba J, Johnson C, et al. Predicting stereotactic radiosurgery outcomes with multi-observer qualitative appearance labelling versus MRI radiomics. Sci Rep 2023;13:20977. https://doi.org/10.1038/s41598-023-47702-8
Shimamoto T, Sano Y, Yoshimitsu K, Masamune K, Muragaki Y. Precise brain-shift prediction by new combination of w-net deep learning for neurosurgical navigation. Neurol Med Chir 2023;63:295-303. https://doi.org/10.2176/jns-nmc.2022-0350
Wang JY, Qu V, Hui C, Sandhu N, Mendoza MG, Panjwani N, et al. Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery. Radiat Oncol 2023;18:61. https://doi.org/10.1186/s13014-023-02246-z
DeVries DA, Lagerwaard F, Zindler J, Yeung TP, Rodrigues G, Hajdok G, et al. Performance sensitivity analysis of brain metastasis stereotactic radiosurgery outcome prediction using MRI radiomics. Sci Rep 2022;12:20975. https://doi.org/10.1038/s41598-022-25389-7
Chao PJ, Chang L, Kang CL, Lin CH, Shieh CS, Wu JM, et al. Using deep learning models to analyze the cerebral edema complication caused by radiotherapy in patients with intracranial tumor. Sci Rep 2022;12:1555. https://doi.org/10.1038/s41598-022-05455-w
Yang Z, Chen M, Kazemimoghadam M, Ma L, Stojadinovic S, Timmerman R, et al. Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation. Phys Med Amp Biol 2022;67:025004. https://doi.org/10.1088/1361-6560/ac4667
Jaberipour M, Soliman H, Sahgal A, Sadeghi-Naini A. A priori prediction of local failure in brain metastasis after hypo-fractionated stereotactic radiotherapy using quantitative MRI and machine learning. Sci Rep 2021;11:21620. https://doi.org/10.1038/s41598-021-01024-9
Fang Y, Wang H, Feng M, Zhang W, Cao L, Ding C, et al. Machine-Learning prediction of postoperative pituitary hormonal outcomes in nonfunctioning pituitary adenomas: a multicenter study. Front Endocrinol 2021;12:748725. https://doi.org/10.3389/fendo.2021.748725
Zhou Z, Sanders JW, Johnson JM, Gule-Monroe MK, Chen MM, Briere TM, et al. Computer-aided detection of brain metastases in t1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors. Radiology 2020;295:407-15. https://doi.org/10.1148/radiol.2020191479
Zhu E, Shi W, Chen Z, Wang J, Ai P, Wang X, et al. Reasoning and causal inference regarding surgical options for patients with low‐grade gliomas using machine learning: A SEER‐based study. Cancer Med 2023;12:20878-91. https://doi.org/10.1002/cam4.6666
Touati R, Kadoury S. A least square generative network based on invariant contrastive feature pair learning for multimodal MR image synthesis. Int J Comput Assist Radiol Surg 2023;18:971-9. https://doi.org/10.1007/s11548-023-02916-z
Cardone D, Trevisi G, Perpetuini D, Filippini C, Merla A, Mangiola A. Intraoperative thermal infrared imaging in neurosurgery: machine learning approaches for advanced segmentation of tumors. Phys Eng Sci Med 2023;46:325-37. https://doi.org/10.1007/s13246-023-01222-x
Doyen S, Nicholas P, Poologaindran A, Crawford L, Young IM, Romero‐Garcia R, et al. Connectivity‐based parcellation of normal and anatomically distorted human cerebral cortex. Hum Brain Mapp 2021;43:1358-69. https://doi.org/10.1002/hbm.25728
Fabelo H, Halicek M, Ortega S, Shahedi M, Szolna A, Piñeiro J, et al. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. Sensors 2019;19:920. https://doi.org/10.3390/s19040920
Tariciotti L, Caccavella VM, Fiore G, Schisano L, Carrabba G, Borsa S, et al. A deep learning model for preoperative differentiation of glioblastoma, brain metastasis and primary central nervous system lymphoma: a pilot study. Front Oncol 2022;12:816638. https://doi.org/10.3389/fonc.2022.816638
Bouget D, Eijgelaar RS, Pedersen A, Kommers I, Ardon H, Barkhof F, et al. Glioblastoma surgery imaging–reporting and data system: validation and performance of the automated segmentation task. Cancers 2021;13:4674. https://doi.org/10.3390/cancers13184674
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Wesley Lima Guimarães, Ana Paula Beirigo Barbosa, Gerley Adriano Miranda Cruz, Marcus Kalyel Ferreira Godoi, Maria Carolina Mota Mendes, Salvador Rassi Filho, Jalsi Tacon Arruda

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Como Citar
Aprovado 2025-03-12
Publicado 2025-03-25
