Exercício e tDCS na variabilidade cardiaca e nivel de cortisol na fibromialgia
DOI:
https://doi.org/10.34024/rnc.2025.v33.19713Palavras-chave:
doenças reumáticas, disaltonomia, cortisol, tDCSResumo
Objetivo. Analisar e descrever os efeitos do exercício físico associado à estimulação transcraniana por corrente contínua (tDCS), aplicada sobre o córtex pré-frontal dorsolateral esquerdo (DLPFC) com intensidade de 2mA, na dosagem de serotonina, cortisol salivar e nas características clínicas de uma participante com fibromialgia. Método. Foi realizado um estudo com delineamento de sujeito único (single-subject design), com protocolo "A-B-C", subdividido em 6 semanas. O protocolo "A" correspondeu a duas semanas de exercício aeróbico por 30 minutos; o protocolo "B", a duas semanas de exercício aeróbico por 30 minutos associado à tDCS ativa nos primeiros 20 minutos; e o protocolo "C", a duas semanas de exercício aeróbico por 30 minutos associado à tDCS sham. A participante foi avaliada no início e ao final de cada protocolo por meio da escala COMPASS 21, da variabilidade da frequência cardíaca e do nível de cortisol salivar. Resultados. No protocolo B, foram observados melhores resultados na modulação do sistema nervoso autônomo e nos níveis de cortisol salivar. Conclusão. O protocolo de exercício físico resultou em diferenças clínicas nos níveis de cortisol e na modulação do sistema nervoso autônomo.
Métricas
Referências
1.Walker J. Fibromyalgia: clinical features, diagnosis and management. Nurs Stand 2016;31:51-63. https://doi.org/10.7748/ns.2016.e10316
2.Baek SH, Seok HY, Koo YS, Kim BJ. Lengthened Cutaneous Silent Period in Fibromyalgia Suggesting Central Sensitization as a Pathogenesis. PLOS ONE 2016;11:51-63. https://doi.org/10.1371/journal.pone.0149248
3.Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders. Int J Neuropsychopharmacol 2021;24:256-313. https://doi.org/10.1093/ijnp/pyaa051
4.Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-individual variation during transcranial direct current stimulation and dose normalization using computer models derived from MRI. Front Psychiatr 2012;3:91. https://doi.org/10.3389/fpsyt.2012.00091
5.Lloyd DM, Wittkopf PG, Arendsen LJ, Jones AKP. Is transcranial direct current stimulation effective for treating fibromyalgia pain? A Systematic Review and Meta-Analysis. J Pain 2020;21:1085-100. https://doi.org/10.1016/j.jpain.2020.03.003
6.Martínez-Lavín M. Autonomic nervous system dysfunction may explain the multisystem features of fibromyalgia. Semin Arthritis Rheum 2007;36:356-60. https://doi.org/10.1016/S0049-0172(00)80008-6
7.Castaño MY, Garrido M, Rodríguez AB, Gómez MÁ. A melatonina melhora o estado de humor e qualidade de vida e diminui os níveis de cortisol na fibromialgia. Biol Res Enferm 2019;21:22-9. https://doi.org/10.1016/j.riem.2018.07.005
8.Mendonça ME, Santana MB, Baptista AF, Datta A, Bikson M, Fregni F. Transcranial DC stimulation in fibromyalgia: optimized cortical targeting supported by high-resolution computational models. J Pain 2011;12:610-7. https://doi.org/10.1016/j.jpain.2011.01.431
9.Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 2016;127:1031-48. https://doi.org/10.1016/j.clinph.2015.11.012
10.Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2019;56:1137-66. https://doi.org/10.1007/s12035-018-1147-2
11.Martínez-Lavín M. Fibromyalgia in women: somatisation or stress-evoked, sex-dimorphic neuropathic pain? Clin Exp Rheumatol 2021;39:422-5. https://doi.org/10.55563/clinexprheumatol/0c7d6v
12.Fregni F, Gimenes R, Valle AC, Ferreira MJ, Rocha RR, Natalle L, et al. A randomized, sham-controlled, proof-of-principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 2006;54:3988-98. https://doi.org/10.1002/art.22295
13.Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol 2001;37:153-6. https://doi.org/10.1016/s0735-1097(00)01054-8
14.Sletten DM, Nydam T, Campbell K, Low PA, Singer W. The COMPASS 31: A refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin Proc 2012;87:1196-201. https://doi.org/10.1016/j.mayocp.2012.10.013
15.Winkelmann A. Is Aerobic Exercise Training Beneficial for Adults With Fibromyalgia? A Cochrane Review Summary with Commentary. Am J Phys Med Rehabil 2019;98:169-70. https://doi.org/10.1097/PHM.0000000000001095
16.Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 2005;6:1-9. https://doi.org/10.1007/s10522-004-7386-7
17.Dalbo VJ, Roberts MD, Hassell SE, Brown RD, Kerksick CM. Effects of age on serum hormone concentrations and intramuscular proteolytic signaling before and after single bout of resistance training. J Strength Cond Res 2011;25:1-9. https://doi.org/10.1519/JSC.0b013e3181b2b538
18.Hackney AC. Exercise as a stressor to the human neuroendocrine system. Med Kaunas 2006;42:788-97. https://pubmed.ncbi.nlm.nih.gov/17090977/
19.Heffernan KS, Fahs CA, Shinsako KK, Jae SY, Fernhall B. Heart rate recovery and heart rate complexity following resistance exercise training and detraining in young men. Am J Physiol Heart Circ Physiol 2007;293:h3180-6. https://doi.org/10.1152/ajpheart.00549.2007
20.Gamelin FX, Berthoin S, Sayah H, Libersa C, Bosquet L. Effect of training and detraining on heart rate variability in healthy young men. Int J Sports Med 2007;28:564-70. https://doi.org/10.1055/s-2006-955147
21.Martinez-Lavin M. Fibromyalgia as a neuropathic pain syndrome. Rev Bras Reumatol 2013;43:167-70. https://www.medcentral.com/rheumatology/fibromyalgia/fibromyalgia-neuropathic-pain-disorder-link-small-fiber-neuropathy
22.Cabo-Meseguer A, Cerdá-Olmedo G, Trillo-Mata JL. Fibromyalgia: Prevalence, epidemiologic profiles and economic costs. Med Clin (Barc) 2017;149:441-8. https://doi.org/10.1016/j.medcli.2017.06.008
23.Okano AH, Montenegro RA, Farinatti PTV, Li LM, Brunoni AR, Fontes EB. Estimulação cerebral na promoção da saúde e melhoria do desempenho físico. Rev Bras Educ Fis Esp 2013;27:347-56. https://doi.org/10.1590/S1807-55092013000200015
24.Nick JD. Neurodoping: Brain Stimulation as a Performance-Enhancing Measure. Sports Med 2013;43:649-53. https://doi.org/10.1007/s40279-013-0042-3
25.Schestatsky P, Simis M, Freeman R, Pascual-Leone A, Fregni F. Non-invasive brain stimulation and the autonomic nervous system. Clin Neurophysiol 2013;124:1716-8. https://doi.org/10.1016/j.clinph.2013.02.119
26.Redfearn JW, Lippold OC, Costain R. A Preliminary Account of the Clinical Effects of Polarizing the Brain in Certain Psychiatric Disorders. Br J Psychiatry 1964;110:773-85. https://doi.org/10.1192/bjp.110.469.773
27.Moliadze V, Antal A, Paulus W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol 2010;121:2165-71. https://doi.org/10.1016/j.clinph.2010.04.033
28.Montenegro R, Farinatti PTV, Fontes EB, Soares PPS, Cunha FA, Gurgel JL, et al. Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neurosci Lett 2011;497:32-6. https://doi.org/10.1016/j.neulet.2011.04.019
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Hian Wellington Santos Vasques, Eduardo Henrique loreti

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Como Citar
Aprovado 2025-05-13
Publicado 2025-08-25
