Objective effects of white noise on the sleep of university students: a pilot study
DOI:
https://doi.org/10.34024/rnc.2024.v32.19556Keywords:
Polysomnography, Disorders of Excessive Somnolence, Attention, Hypersomnia, noises, UniversitiesAbstract
Objective. To assess sleep pattern variations through polysomnography after white noise exposure. Method. Split-night polysomnography was performed on nine university students, mean age of 20.7±1.6 years. Sleeping in a quiet controlled environment, they were not exposed to white noise during the first 4 hours of the night, being exposed to white noise the remaining 4 hours. Results. White noise did not affect sleep efficacy. The number of arousals did not increase with the exposure to white noise. There was a significant increase in the initial stage of sleep (N1), not expected in the second half of the night. REM sleep, expected to happen mostly during the second half of the night, was slightly lower than normal. Conclusion. In this pilot study, white noise exposure did not affect sleep efficacy, nor did it disrupt sleep by arousals. It was not possible to show any other benefit of sleep quality parameters.
Metrics
References
Situm M, Kolić M, Spoljar S. Quality of life and psychological aspects in patients with chronic leg ulcer. Acta Med Croatica 2016;70:61-3. https://pubmed.ncbi.nlm.nih.gov/27220192/
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, et al. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022;66:100978. https://doi.org/10.1016/j.yfrne.2022.100978
Associação Brasileira de Normas Técnicas. Acústica - Avaliação do ruído em áreas habitadas, visando o conforto da comunidade - Procedimento (NBR 10151). 2000 (Acessed: 02/08/2023). Available fram: https://www.sema.df.gov.br/wp-conteudo/uploads/2017/09/NBR-10151-de-2000.pdf
Santurtún M, García Tárrago MJ, Fdez-Arroyabe P, Zarrabeitia MT. Noise Disturbance and Well-Being in the North of Spain. Int J Environ Res Public Health 2022;19:16457. https://doi.org/10.3390/ijerph192416457
Eller OC, Willits AB, Young EE, Baumbauer KM. Pharmacological and non-pharmacological therapeutic interventions for the treatment of spinal cord injury-induced pain. Front Pain Res 2022;3:991736. https://doi.org/10.3389/fpain.2022.991736
Yoon H, Baek HJ. External auditory stimulation as a non-pharmacological sleep aid. Sensors (Basel) 2022;22:1264. https://doi.org/10.3390/s22031264
Tang ZL, Li SM, Yu LJ. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios. Sensors (Basel) 2016;16:844. https://doi.org/10.3390/s16060844
Dickson GT, Schubert E. How does music aid sleep? Literature review. Sleep Med 2019;63:142-50. https://doi.org/10.1016/j.sleep.2019.05.016
Liao J, Liu G, Xie N, Wang S, Wu T, Lin Y, et al. Mothers' voices and white noise on premature infants' physiological reactions in a neonatal intensive care unit: A multi-arm randomized controlled trial. Int J Nurs Stud 2021;119:103934. https://doi.org/10.1016/j.ijnurstu.2021.103934
Batho LP, Martinussen R, Wiener J. The effects of different types of environmental noise on academic performance and perceived task difficulty in adolescents with ADHD. J Atten Disord 2020;24:1181-91. https://doi.org/10.1177/1087054715594421
Lin LW, Weng SC, Wu HS, Tsai LJ, Lin YL, Yeh SH. The Effects of White Noise on Agitated Behaviors, Mental Status, and Activities of Daily Living in Older Adults With Dementia. J Nurs Res 2018;26:2-9. https://doi.org/10.1097/JNR.0000000000000211
Warjri E, Dsilva F, Sanal TS, Kumar A. Impact of a white noise app on sleep quality among critically ill patients. Nurs Crit Care 2021;7:815-23. https://doi.org/10.1111/nicc.12742
Ebben MR, Yan P, Krieger AC. The effects of white noise on sleep and duration in individuals living in a high noise environment in New York City. Sleep Med 2021;83:256-9. https://doi.org/10.1016/j.sleep.2021.03.031
Capezuti E, Pain K, Alamag E, Chen X, Philibert V, Krieger AC. Systematic review: auditory stimulation and sleep. J Clin Sleep Med 2021;18:1697-709. https://doi.org/10.5664/jcsm.9860
American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events Summary of Updates in Version 2.6. 2020 (Accessed: 01/05/2023). Available from: https://aasm.org/clinical-resources/scoring-manual/
Riedy SM, Smith MG, Rocha S, Basner M. Noise as a sleep aid: A systematic review. Sleep Med Rev 2021;55:101385. https://doi.org/10.1016/j.smrv.2020.101385
Saeda S, Fujiwara K, Kinoshita T, Sumi Y, Matsuo M, Yamaki K, et al. Effects of pleasant sound on overnight sleep condition: A crossover randomized study. Front Sleep 2022;1:986333. https://doi.org/10.3389/frsle.2022.986333
Schade MM, Mathew GM, Roberts DM, Gartenberg D, Buxton OM. Enhancing Slow Oscillations and Increasing N3 Sleep Proportion with Supervised, Non-Phase-Locked Pink Noise and Other Non-Standard Auditory Stimulation During NREM Sleep. Nat Sci Sleep 2020;12:411-29. https://doi.org/10.2147/NSS.S243204
Rosales-Lagarde A, Rodriguez-Torres EE, Itzá-Ortiz BA, Miramontes P, Vázquez-Tagle G, Enciso-Alva JC, et al. The Color of Noise and Weak Stationarity at the NREM to REM Sleep Transition in Mild Cognitive Impaired Subjects. Front Psychol 2018;9:1205. https://doi.org/10.3389/fpsyg.2018.01205
Schumann AY, Bartsch RP, Penzel T, Ivanov PCh, Kantelhardt JW. Aging effects on cardiac and respiratory dynamics in healthy subjects across sleep stages. Sleep 2010;33:943-55. https://doi.org/10.1093/sleep/33.7.943
Lavigne G, Brousseau M, Kato T, Mayer P, Manzini C, Guitard F, et al. Experimental pain perception remains equally active over all sleep stages. Pain 2004;110:646-55. https://doi.org/10.1016/j.pain.2004.05.003
Nassur AM, Léger D, Lefèvre M, Elbaz M, Mietlicki F, Nguyen P, et al. The impact of aircraft noise exposure on objective parameters of sleep quality: results of the DEBATS study in France. Sleep Med 2019;54:70-7. https://doi.org/10.1016/j.sleep.2018.10.013
Parrino L, Rausa F, Azzi N, Pollara I, Mutti C. Cyclic alternating patterns and arousals: what is relevant in obstructive sleep apnea? In Memoriam Mario Giovanni Terzano. Curr Opin Pulm Med 2021;27:496-504. https://doi.org/10.1097/MCP.0000000000000825
Ba̧czalska J, Wojciechowska W, Rojek M, Hahad O, Daiber A, Münzel T, et al. Cardiovascular consequences of aircraft noise exposure. Front Public Health 2022;10:1058423. https://doi.org/10.3389/fpubh.2022.1058423
Fan Y, Liang J, Cao X, Pang L, Zhang J. Effects of Noise Exposure and Mental Workload on Physiological Responses during Task Execution. Int J Environ Res Public Health 2022;19:12434. https://doi.org/10.3390/ijerph191912434
Lee J, Park J, Lee J, Ahn JH, Sim CS, Kweon K, et al. Effect of Noise on Sleep and Autonomic Activity in Children according to Source. J Korean Med Sci 2021;36:e234. https://doi.org/10.3346/jkms.2021.36.e234
Thiesse L, Rudzik F, Kraemer JF, Spiegel K, Leproult R, Wessel N, et al. Transportation noise impairs cardiovascular function without altering sleep: The importance of autonomic arousals. Environ Res 2020;182:109086. https://doi.org/10.1016/j.envres.2019.109086
Olsen M, Schneider LD, Cheung J, Peppard PE, Jennum PJ, Mignot E, et al. Automatic, electrocardiographic-based detection of autonomic arousals and their association with cortical arousals, leg movements, and respiratory events in sleep. Sleep 2018;41:zsy006. https://doi.org/10.1093/sleep/zsy006
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Camila de Castro Corrêa, Silke Anna Theresa Weber, Vanessa Luisa Destro Fidêncio, Elaine Garcias dos Santos, Lorrana Emily Oliveira Fernandes, Reynaldo Monteiro Lopes, Welerson Ferreira Abreu, Gabriela Guenther Ribeiro Novanta

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Accepted 2024-11-26
Published 2024-12-12
