Irisin, a myocin as therapy for Alzheimer's Disease: integrative review

Authors

DOI:

https://doi.org/10.34024/rnc.2024.v32.18794

Keywords:

Alzheimer's disease, Myokines, BDNF, Type III Fibronectin Domain

Abstract

Introduction. Alzheimer's disease (AD) is neurodegenerative, prevalent and serious. The presence of sensitive amyloid plaques (Aβ) is one of the main causes of AD. Studies show that Irisin, a myokine, produced through muscle contraction, from the cleavage of fibronectin type III with domain 5 (FNDC5) can reduce AD ​​disorders. Objective. To highlight studies that demonstrate the benefits of Irisin and its action in AD. Method. The following databases were used: Pubmed, Scopus, Science Direct and VHL. Results. A total of 182 articles were identified, and after reading and analysis, 19 met the inclusion criteria in this review. Conclusion. After analyzing the studies, it is clear that irisin is promising for the treatment and prevention of AD. It can be concluded that the effects of irisin in AD are beneficial, but more investigative studies in humans are needed to better develop a possible therapy.

 

Metrics

Metrics Loading ...

References

Rabinovici GD. Late-onset Alzheimer Disease. Contin Lifelong Learn Neurol 2019;25:14-33. https://doi.org/10.1212/CON.0000000000000700

Haines JL. Alzheimer Disease: Perspectives from Epidemiology and Genetics. J Law Med Ethics J Am Soc Law Med Ethics 2018;46:694-8. https://doi.org/10.1177/1073110518804230

Pasqualetti G, Tognini S, Calsolaro V, Polini A, Monzani F. Potential drug-drug interactions in Alzheimer patients with behavioral symptoms. Clin Interv Aging 2015;10:1457-66.

https://doi.org/10.2147/CIA.S87466

Jin Y, Sumsuzzman DM, Choi J, Kang H, Lee SR, Hong Y. Molecular and Functional Interaction of the Myokine Irisin with Physical Exercise and Alzheimer’s Disease. Mol Basel Switz 2018;23:e3229. https://doi.org/10.3390/molecules23123229

Lourenco MV, Frozza RL, Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 2019;25:165-75. https://doi.org/10.1038/s41591-018-0275-4

Stella F, Gobbi S, Corazza DI, Costa JLR. Depressão no Idoso: Diagnóstico, Tratamento e Benefícios da Atividade Física. Motriz (Rio Claro) 2002;8:91-8. https://www.periodicos.rc.biblioteca.unesp.br/index.php/motriz/article/view/6473

Tavares BB, Moraes H, Deslandes AC, Laks J. Impact of physical exercise on quality of life of older adults with depression or Alzheimer’s disease: a systematic review. Trend Psychiatr Psychother 2014;36:134-9. https://doi.org/10.1590/2237-6089-2013-0064

Grygiel-Górniak B, Puszczewicz M. A review on irisin, a new protagonist that mediates muscle-adipose-bone-neuron connectivity. Eur Rev Med Pharmacol Sci 2017;21:46-87-93. https://www.europeanreview.org/article/13652

Gomarasca M, Banfi G, Lombardi G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv Clin Chem 2020;94:155-218. https://doi.org/10.1016/bs.acc.2019.07.010

Noda Y, Kuzuya A, Tanigawa K, Araki M, Kawai R, Ma B, et al. Fibronectin type III domain-containing protein 5 interacts with APP and decreases amyloid β production in Alzheimer’s disease. Mol Brain 2018;11:61. https://doi.org/10.1186/s13041-018-0401-8

Wang K, Li H, Wang H, Wang J, Song F, Sun Y. Irisin Exerts Neuroprotective Effects on Cultured Neurons by Regulating Astrocytes. Mediators Inflamm 2018;2018:1-7.

https://doi.org/10.1155/2018/9070341

Lourenco MV, Ribeiro FC, Sudo FK, Drummond C, Assunção N, Vanderborght B, et al. Cerebrospinal fluid irisin correlates with amyloid‐β, BDNF, and cognition in Alzheimer’s disease. Alzheimers Dement Diagn Assess Dis Monit 2020;12:e12034. https://doi.org/10.1002/dad2.12034

Islam MR, Valaris S, Young MF, Haley EB, Luo R, Bond SF, et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab 2021;3:1058-70. https://doi.org/10.1038/s42255-021-00438-z

Bretland KA, Lin L, Bretland KM, Smith MA, Fleming SM, Dengler‐Crish CM. Irisin treatment lowers levels of phosphorylated tau in the hippocampus of pre‐symptomatic female but not male htau mice. Neuropathol Appl Neurobiol 2021;47:967-78.

https://doi.org/10.1111/nan.12711

Lourenco MV, Freitas GB, Raony Í, Ferreira ST, De Felice FG. Irisin stimulates protective signaling pathways in rat hippocampal neurons. Front Cell Neurosci 2022;16:953991.

https://doi.org/10.1002/dad2.12034

Kim E, Kim H, Jedrychowski MP, Bakiasi G, Park J, Kruskop J, et al. Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling. Neuron 2023;111:3619-33. https://doi.org/10.1016/j.neuron.2023.08.012

El Kadmiri N, Hamzi K, El Moutawakil B, Slassi I, Nadifi S. Genetic aspects of Alzheimer’s disease. Pathol Biol 2013;15:80-6.

https://doi.org/10.1097/NRL.0b013e318187e76b

Itzhaki RF, Golde TE, Heneka MT, Readhead B. Do infections have a role in the pathogenesis of Alzheimer disease? Nat Rev Neurol 2020;16:193-7. https://doi.org/10.1038/s41582-020-0323-9

Pahlavani HA. Exercise therapy to prevent and treat Alzheimer’s disease. Front Aging Neurosci 2023;15:1243869. https://doi.org/10.3389/fnagi.2023.1243869

Haas LT, Strittmatter SM. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease. J Biol Chem 2016;291:17112-21. https://doi.org/10.1074/jbc.M116.720664

Limbad C, Oron TR, Alimirah F, Davalos AR, Tracy TE, Gan L, et al. Astrocyte senescence promotes glutamate toxicity in cortical neurons. PloS One 2020;15:e0227887. https://doi.org/10.1371/journal.pone.0227887

Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1α-dependent myokine that drives browning of white fat and thermogenesis. Nature 2012;481:463-8. https://doi.org/10.1038/nature10777

Kazeminasab F, Sadeghi E, Afshari-Safavi A. Comparative Impact of Various Exercises on Circulating Irisin in Healthy Subjects: A Systematic Review and Network Meta-Analysis. Oxid Med Cell Longev 2022;2022:8235809. https://doi.org/10.1155/2022/8235809

Maak S, Norheim F, Drevon CA, Erickson HP. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocr Rev 2021;42:436-56. https://doi.org/10.1210/endrev/bnab003

Glazachev OS, Zapara MA, Kryzhanovskaya SY, Dudnik EN, Yumatov EA, Susta D. Whole-body repeated hyperthermia increases irisin and brain-derived neurotrophic factor: A randomized controlled trial. J Therm Biol 2021;101:103067. https://doi.org/10.1016/j.jtherbio.2021.103067

Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 2013;18:649-59. https://doi.org/10.1016/j.cmet.2013.09.008

Kim OY, Song J. The Role of Irisin in Alzheimer’s Disease. J Clin Med 2018;7:407-20. https://doi.org/10.3390/jcm7110407

Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int J Mol Sci 2020;21:5895. https://doi.org/10.3390/ijms21165895

Published

2024-08-28

Issue

Section

Artigos de Revisão

How to Cite

1.
Martins VA da S, Moreira CMD, Garcia E dos S, Junior AL de S. Irisin, a myocin as therapy for Alzheimer’s Disease: integrative review. Rev Neurocienc [Internet]. 2024 Aug. 28 [cited 2025 Dec. 13];32:1-16. Available from: https://periodicos.unifesp.br/index.php/neurociencias/article/view/18794
Received 2024-06-07
Accepted 2024-08-14
Published 2024-08-28