Efecto de la retención del tronco y las extremidades superiores sobre la función motora después de un accidente cerebrovascular: un estudio piloto de ensayo clínico aleatorizado
DOI:
https://doi.org/10.34024/rnc.2024.v32.18633Palabras clave:
Ictus, rehabilitación, función, hemiparesiaResumen
Objetivo. Las compensaciones del tronco no permiten que el miembro superior utilice todo su potencial para realizar actividades funcionales. Por lo tanto, el objetivo de este estudio fue analizar los efectos de la terapia de inducción y retención del movimiento (TRIM) con estabilización del tronco y las extremidades superiores en pacientes hemiparéticos después de un accidente cerebrovascular. Método. Estudio piloto clínico con 18 personas con secuelas de un accidente cerebrovascular fueron asignadas aleatoriamente a uno de tres grupos: un grupo de control (CG), un grupo TRIM experimental sin restricción del tronco (GET) y un grupo TRIM experimental con restricción del tronco (GETT). Los grupos GET y GETT se sometieron a terapia TRIM basada en el protocolo Shaping durante diez sesiones consecutivas, de 1 hora cada una, durante 2 semanas. Para evaluación, el estudio utilizó la Escala de Evaluación de la Función Sensorial-Motriz (FAS) de Fugl-Meyer, el Inventario de Actividad de las Extremidades Superiores (MAL), la electromiografía de superficie (EMG) de los flexores, extensores y flexores superficiales de la muñeca del codo, así como Mediciones goniométricas del miembro superior. Resultados. Se observaron diferencias significativas a lo largo del tiempo en los grupos GET y GETT para las puntuaciones totales en las escalas FAS y MAL, así como en el rango de movimiento para la flexión del hombro (p<0,05). No se encontraron diferencias significativas para las variables EMG. Conclusión. TRIM combinado con estabilización del tronco no mostró ningún efecto significativo sobre las actividades funcionales, sensoriomotoras o EMG y las variables de rango de movimiento al comparar diferentes grupos.
Métricas
Referencias
Mendelson SJ, Prabhakaran S. Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic Stroke: A Review. Clin Rev Edu 2021;325:1088-98. https://doi.org/10.1001/jama.2020.26867
Anjos SMOT, Morris DM, Taub E. Constraint-Induced Movement Therapy for Improving Motor Function of the Paretic Lower Extremity After Stroke. Am J Phys Med Rehab 2020:99:75-8. https://doi.org/10.1097/PHM.0000000000001249
Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J Mol Sci 2020;21:7609. https://doi.org/10.3390/ijms21207609
Khan F, Abusharha S, Alfuraidy A, Nimatallah K, Almalki R, Basaffar R, et al. Prediction of Factors Affecting Mobility in Patients with Stroke and Finding the Mediation Effect of Balance on Mobility: A Cross-Sectional Study. Int J Environ Res Public Health 2022:19:16612. https://doi.org/10.3390/ijerph192416612
Raghavan P. Upper Limb Motor Impairment Post Stroke. Phys Med Rehabil Clin N Am 2015;26:599–610. https://doi.org/10.1016/j.pmr.2015.06.008
Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev 2015;10:1-103. https://doi.org/10.1002/14651858.CD004433.pub3
Kim J-H, Chang M-Y. Effects of modified constraint-induced movement therapy on upper extremity function and occupational performance of stroke patients. J Phys Ther Sci 2018;30:1092-4. https://doi.org/10.1589/jpts.30.1092
Kwakkel G, Veerbeek JM, Wegen EHV, Wolf SL. Constraint-Induced Movement Therapy after Stroke. Lancet Neurol 2015;14:224-34. https://doi.org/10.1016/S1474-4422(14)70160-7
Reddy RS, Gular K, Dixit S, Kandakurti PK, Tedla JS, Gautam AP, et al. Impact of Constraint-Induced Movement Therapy (CIMT) on Functional Ambulation in Stroke Patients—A Systematic Review and Meta-Analysis. Inter J Environ Res Public Health 2022;19:12809. https://doi.org/10.3390/ijerph191912809
Maki T, Quagliato EMAB, Cacho EWA, Nascimento NH, Inoue MMEA, Viana MA. Estudo de confiabilidade da aplicação da escala de Fugl-Meyer no Brasil. Rev Bras Fisioter 2006;10:177-83. https://doi.org/10.1590/S1413-35552006000200007
Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189-98. https://doi.org/10.1016/0022-3956(75)90026-6
Alia C, Spalletti C, Lai S, Panarese A, Lamola G, Bertolucci F, et al. Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation. Front Cell Neurosci 2017;11:1-22. https://doi.org/10.3389/fncel.2017.00076
Michaelsen SM, Rocha AS, Knabben RJ, Rodrigues LP, Fernandes CGC. Translation, adaptation and inter-raterreliability of the administration manual for the Fugl-Meyer assessment. Rev Bras Fisioter 2011;15:80-8. https://doi.org/10.1590/S1413-35552011000100013
Saliba VA, Magalhães LC, Faria CDCM, Laurentino GEC, Cassiano JG, Teixeira-Salmela LF. Adaptação transcultural e análise das propriedades psicométricas da versão brasileira do instrumento Motor Activity Log. Rev Panam Salud Publica 2011:30:262-71. https://doi.org//10.1590/S0102-311X2006001200012
McManus L, De Vito G, Lowery MM. Analysis and Biophysics of Surface EMG for Physiotherapists and Kinesiologists: Toward a Common Language With Rehabilitation Engineers. Fron Neurol 2020;11:1-25. https://doi.org/10.3389/fneur.2020.576729
SURFACE ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SENIAM). 2023 (Acessado em: 18/01/2023). Disponível em: http://www.seniam.org/
Marques AP. Manual de Goniometria. 2º ed. São Paulo: Editora Manole, 2003.
Gauthier VL, Taub E, Perkins C, Ortmann M, Mark VW, Uswatte G. Remodeling the brain plastic structural brain changes produced by different motor therapies after stroke. Stroke 2008;39:1520-5. https://doi.org/10.1161/STROKEAHA.107.502229
Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-Induced Cortical reorganization after stroke in humans. Stroke 2000;31:1210-6. https://doi.org/10.1161/01.str.31.6.1210
Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of Constraint-Induced movement therapy on upper extremity function 3 to 9 months after Stroke. JAMA 2006;296:2095-104. https://doi.org/10.1001/jama.296.17.2095
Suputtitada A, Suwanwela NC, Tumvitee S. Effectiveness of Constraint induced Movement Therapy in Chronic Stroke Patients. J Med Assoc Thai 2004;87:1482-90. http://www.medassocthai.org/journal
Sterr A, Elbert T, Berthold I, Kölbel S, Rockstroh B, Taub E. Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Arc Phys Med Rehab 2002;83:1374-7. https://doi.org/10.1053/apmr.2002.35108
Miltner WHR, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: A replication. Stroke 1999;30:586-92. https://doi.org/10.1161/01.str.30.3.586
Morris DM, Taub E, Mark VW. Constraint indeced movemente therapy: characterizing the intervention protocol. Eur Medicophysical 2006;42:257-68. https://pubmed.ncbi.nlm.nih.gov/17039224/
Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A. A Placebo-Controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 2006;37:1045-9. https://doi.org/10.1161/01.STR.0000206463.66461.97
Eren B, Saygi EK, Tokgoz D, Leblebicier MA. Modified constraint-induced movement therapy during hospitalization in children with perinatal brachial plexus palsy: A randomized controlled trial. J Hand Ther 2020;33:418e425. https://doi.org/10.1016/j.jht.2019.12.008
Michaelsen SM, Levin FM. Short-Term Effects of Practice With Trunk Restraint on Reaching Movements in Patients With Chronic Stroke: A Controlled Trial. Stroke 2004;35:1914-9. https://doi.org/10.1161/01.STR.0000132569.33572.75
Hosseini ZS, Peyrovi H, Gohari M. The Effect of Early Passive Range of Motion Exercise on Motor Function of People with Stroke: a Randomized Controlled Trial. J Caring Sci 2019;8:39-44. https://doi.org/10.15171/jcs.2019.006
Onishi H. Cortical excitability following passive movement. Phys Ther Res 2018;21:23-32. https://doi.org/10.1298/ptr.R0001
Bertolini SMM, Oliveira PD, Cararo DC, Tamyozo MF. Resposta das estruturas articulares do joelho de ratos pós-imobilização. Rev Ciênc Saúde 2009;2:8-15. https://doi.org/10.15448/1983-652X.2009.1.4876
Raghavan P. Upper Limb Motor Impairment Post Stroke. Phys Med Rehabil Clin N Am 2015;26:599-610. https://doi.org/10.1016/j.pmr.2015.06.008
Handsfeld GG, Williams S, Khuu S, Lichtwark G, Stott NS. Muscle architecture, growth, and biological Remodelling in cerebral palsy: a narrative review. BMC Musculoskel Disord 2022;23:233. https://doi.org/10.1186/s12891-022-05110-5
Teixeira-Salmela LF, Oliveira ESG, Santana EGS, Resende GP. Fortalecimento muscular e condicionamento físico em hemiplégicos. Acta Fisiátr 2000;7:108-18. https://doi.org/10.5935/0104-7795.20000001
Henneman E, Somjen G, Carpenter DO. Excitability and inhibitability of motoneurones of different sizes. J Neurophysiol 1965;28:599-620. https://doi.org/10.1152/jn.1965.28.3.599
Zarantonello MM, Stefani MA, Comel JC. Electromyographic analysis of constraint-induced movement therapy effects in patients after stroke in chronic course. J Phys Ther Sci 2017;29:1883–8. https://doi.org/10.1589/jpts.29.1883
Freitas AG, Sutani J, Pires MA, Prada SHF. Protocolo modificado da Terapia de Restrição em paciente hemiplégico. Rev Neurocienc 2010;18:199–203. https://doi.org/10.34024/rnc.2010.v18.8500
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Bruna Leonel Carlos, Andressa Alves Francisco, Sandra Aparecida Dias, Vanessa de Queiroz dos Santos, Patrícia Pereira Alfredo, Luciana Maria dos Reis, Andréia Maria Silva Vilela Terra, Adriana Teresa Silva Santos

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Aceptado 2024-09-03
Publicado 2024-10-01
