Efeitos da tecnologia assistiva em indivíduos com paresia devido disfunção neurológica

Autores

DOI:

https://doi.org/10.34024/rnc.2025.v33.16594

Palavras-chave:

Paresia, Tecnologia Assistiva, Terapia por Estimulação Elétrica, Eletromiografia, Membros Superiores

Resumo

Introdução. Pessoas com paresia possuem diferentes graus de limitação à função motora de membro superior (MS), que afetam as atividades de vida diária e diminuem a qualidade de vida. Para isso, Tecnologia Assistiva (TA) associada à eletroestimulação acionada por eletromiografia (EMG) em MS tem se tornado um recurso que contribui para a melhora da funcionalidade. Objetivo. Identificar os efeitos da intervenção de TA com eletroestimulação acionada por eletromiografia, na função motora de membro superior de pessoas com paresia devido a disfunção neurológica. Método. Trata-se de uma revisão sistemática, em que foram feitas buscas nas bases de dados: Pubmed, Scielo, Medline, Lilacs, Cochrane, PEDro, com a combinação dos termos em inglês relacionados: “hemiparesis”, “motor function”, “assistive technology”, “Upper limb”. Resultados. As buscas resultaram em 1.188 artigos, porém para inclusão, foram elegíveis apenas 3 artigos. A TA utilizada nas intervenções foram: robôs exoesqueleto mecânico vestível de forma livre ou fixos, ao qual usaram estimulação elétrica neuromuscular aplicada nos grupos musculares com base na tarefa desejada. Os estudos apresentaram efeitos na função motora de membro superior, coordenação muscular e tônus muscular de MS após a intervenção e depois de 3 meses. Conclusão. Verificou-se através dos estudos que os efeitos da TA acionada por EMG com a eletroestimulação pode melhorar a função motora de indivíduos com paresia em membro superior, prevenir a atrofia muscular, aumentar a força e reduzir o tônus muscular. Contudo, são necessários mais estudos que identifiquem os efeitos terapêuticos da TA a longo prazo na função dos membros superiores. 

 

Métricas

Carregando Métricas ...

Referências

Magalhães AL, Barros JL, Cardoso MG, Rocha NP, Faleiro RM, Souza LC, et al. Traumatic brain injury in Brazil: an epidemiological study and systematic review of the literature. Arq Neuropsiquiatr 2022;80:410-23. https://doi.org/10.1590/0004-282x-anp-2021-0035

Grumann AR, Martini AC, Forner S, Schroeller SD, Horongozo BD, Baroni GC. Characteristics of Encephalic Vascular Accident patients treated at a state reference center. Rev Pesqui 2017;9:315-20. https://doi.org/10.9789/2175-5361.2017.v9i2.315-320

Deluzio S, Vora I, Kumble S, Zink EK, Stevens RD, Bahouth MN. Feasibility of Early, Motor-Assisted Cycle Ergometry in Critically Ill Neurological Patients With Upper Limb Weakness and Variable Cognitive Status. Am J Phys Med Amp Rehabil 2018;97:e37-41. https://doi.org/10.1097/phm.0000000000000857

Powell MP, Verma N, Sorensen E, Carranza E, Boos A, Fields DP, et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat Med 2023;29:689-99. https://doi.org/10.1038/s41591-022-02202-6

Gane EM, Plinsinga ML, Brakenridge CL, Smits EJ, Aplin T, Johnston V. The Impact of Musculoskeletal Injuries Sustained in Road Traffic Crashes on Work-Related Outcomes: A Systematic Review. Int J Environ Res Public Health 2021;18:11504. https://doi.org/10.3390/ijerph182111504

Hatem SM, Saussez G, della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci 2016;10:442. https://doi.org/10.3389/fnhum.2016.00442

Song R, Tong KY, Hu X, Zhou W. Myoelectrically controlled wrist robot for stroke rehabilitation. J Neuroeng Rehabil 2013;10:52. https://doi.org/10.1186/1743-0003-10-52

Klamroth-Marganska V. Reabilitação de AVC: Robôs Terapêuticos e Dispositivos Assistivos. Avan Med Exp Biol 2018;1065:579-87. https://doi.org/10.1007/978-3-319-77932-4_35

Bastos PA, Silva MS, Ribeiro NM, Mota RD, Galvão Filho T. Tecnologia assistiva e políticas públicas no Brasil. Cad Bras Ter Ocupac 2023;31:1-17. https://doi.org/10.1590/2526-8910.ctoao260434011

Rose CG, O'Malley MK. Design of an assistive, glove-based exoskeleton. In: 2017 International Symposium on Wearable Robotics and Rehabilitation (Werob). Houston: IEEE; 2017. https://doi.org/10.1109/WEROB.2017.8383813

Hussain I, Spagnoletti G, Salvietti G, Prattichizzo D. Toward wearable supernumerary robotic fingers to compensate missing grasping abilities in hemiparetic upper limb. Int J Robot Res 2017;36:1414-36. https://doi.org/10.1177/0278364917712433

Meeker C, Park S, Bishop L, Stein J, Ciocarlie M. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke. IEEE Int Conf Rehabil Robot 2017;2017:1203-10. https://doi.org/10.1109/ICORR.2017.8009413

Van Ommeren AL, Smulders LC, Prange-Lasonder GB, Buurke JH, Veltink PH, Rietman JS. Assistive Technology for the Upper Extremities After Stroke: Systematic Review of Users’ Needs. JMIR Rehabil Assist Technol 2018;5:e10510. https://doi.org/10.2196/10510

Kaur G. Global need of Assistive Product and Assistive Technology for Individuals with Intellectual Disabilities: A Review. Int J Relig 2024;5:1653-61. https://doi.org/10.61707/0kecd230

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4

Cashin AG, McAuley JH. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J Physiother 2020;66:59. https://doi.org/10.1016/j.jphys.2019.08.005

Nam C, Rong W, Li W, Xie Y, Hu X, Zheng Y. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke. Front Neurol 2017;8:679. https://doi.org/10.3389/fneur.2017.00679

Qian Q, Hu X, Lai Q, Ng SC, Zheng Y, Poon W. Early Stroke Rehabilitation of the Upper Limb Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation-Robotic Arm. Front Neurol 2017;8:447. https://doi.org/10.3389/fneur.2017.00447

Hu XL, Tong RK, Ho NS, Xue JJ, Rong W, Li LS. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Neurorehabilit Neural Repair 2014;29:767-76. https://doi.org/10.1177/1545968314565510

Alessandrini M, Preynat-Seauve O, De Briun K, Pepper MS. Stem cell therapy for neurological disorders. South Afr Med J 2019;109:70. https://doi.org/10.7196/samj.2019.v109i8b.14009

Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019;18:459-80. https://doi.org/10.1016/s1474-4422(18)30499-x

Ladecola C, Buckwalter MS, Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Investig 2020;130:2777-88. https://doi.org/10.1172/jci135530

Zhuang JY, Ding L, Shu BB, Chen D, Jia J. Associated Mirror Therapy Enhances Motor Recovery of the Upper Extremity and Daily Function after Stroke: A Randomized Control Study. Neural Plast 2021;2021:1-9. https://doi.org/10.1155/2021/7266263

Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke 2022;17:18-29. https://doi.org/10.1177/17474930211065917

Högg S, Holzgraefe M, Wingendorf I, Mehrholz J, Herrmann C, Obermann M. Upper limb strength training in subacute stroke patients: study protocol of a randomised controlled trial. Trials 2019;20:168. https://doi.org/10.1186/s13063-019-3261-3

Flöel A, Werner C, Grittner U, Hesse S, Jöbges M, Knauss J, et al. Physical fitness training in Subacute Stroke (PHYS-STROKE) - study protocol for a randomised controlled trial. Trials 2014;15:93-100. https://doi.org/10.1186/1745-6215-15-45

Demain S, Burridge J, Ellis-Hill C, Hughes AM, Yardley L, Tedesco-Triccas L, et al. Assistive technologies after stroke: self-management or fending for yourself? A focus group study. BMC Health Serv Res 2013;13:334. https://doi.org/10.1186/1472-6963-13-334

Chen YW, Chiang WC, Chang CL, Lo SM, Wu CY. Comparative effects of EMG-driven robot-assisted therapy versus task-oriented training on motor and daily function in patients with stroke: a randomized cross-over trial. J Neuroeng Rehabil 2022;19:6. https://doi.org/10.1186/s12984-021-00961-w

Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N. Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans Neural Syst Rehabil Eng 2005;13:325-34. https://doi.org/10.1109/TNSRE.2005.850423

Hong YN, Roh J. Alterations in the preferred direction of individual arm muscle activation after stroke. Front Neurol 2023;14:1280276. https://doi.org/10.3389/fneur.2023.1280276

Nam C, Zhang B, Chow T, Ye F, Huang Y, Guo Z, et al. Home-based self-help telerehabilitation of the upper limb assisted by an electromyography-driven wrist/hand exoneuromusculoskeleton after stroke. J Neuroeng Rehabil 2021;18:1-18. https://doi.org/10.1186/s12984-021-00930-3

Saavedra-García A, Moral-Munoz JA, Lucena-Anton D. Mirror therapy simultaneously combined with electrical stimulation for upper limb motor function recovery after stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2021;35:39-50. https://doi.org/10.1177/0269215520951935

Springer S, Khamis S. Effects of functional electrical stimulation on gait in people with multiple sclerosis – A systematic review. Mult Scler Relat Disord 2017;13:4-12. https://doi.org/10.1016/j.msard.2017.01.010

Chasiotis A, Giannopapas V, Papadopoulou M, Chondrogianni M, Stasinopoulos D, Giannopoulos S, et al. The Effect of Neuromuscular Electrical Nerve Stimulation in the Management of Post-stroke Spasticity: A Scoping Review. Cureus 2022;14:e32001. https://doi.org/10.7759/cureus.32001

Knutson JS, Fu MJ, Sheffler LR, Chae J. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. Phys Med Rehabil Clin North Am 2015;26:729-45. https://doi.org/10.1016/j.pmr.2015.06.002

Kristensen MGH, Busk H, Wienecke T. Neuromuscular Electrical Stimulation Improves Activities of Daily Living Post Stroke: A Systematic Review and Meta-analysis. Arch Rehabil Res Clin Transl 2021;4:100167. https://doi.org/10.1016/j.arrct.2021.100167

Maaijwee NA, Arntz RM, Rutten-Jacobs LC, Schaapsmeerders P, Schoonderwaldt HC, van Dijk EJ, et al. Post-stroke fatigue and its association with poor functional outcome after stroke in young adults. J Neurol Neurosurg Amp Psychiatry 2014;86:1120-6. https://doi.org/10.1136/jnnp-2014-308784

Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med 2012;85:201-15. https://pubmed.ncbi.nlm.nih.gov/22737049/

Downloads

Publicado

2025-02-12

Edição

Seção

Revisão Sistemática

Como Citar

1.
Machado VN, Viana Isoldino N, Sambe AY, Nogueira MAD, Pellizzari CC de A, Silva JKM da. Efeitos da tecnologia assistiva em indivíduos com paresia devido disfunção neurológica. Rev Neurocienc [Internet]. 12º de fevereiro de 2025 [citado 14º de dezembro de 2025];33:1-27. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/16594
Recebido 2024-04-25
Aprovado 2025-01-27
Publicado 2025-02-12