Efeitos da tecnologia assistiva em indivíduos com paresia devido disfunção neurológica
DOI:
https://doi.org/10.34024/rnc.2025.v33.16594Palavras-chave:
Paresia, Tecnologia Assistiva, Terapia por Estimulação Elétrica, Eletromiografia, Membros SuperioresResumo
Introdução. Pessoas com paresia possuem diferentes graus de limitação à função motora de membro superior (MS), que afetam as atividades de vida diária e diminuem a qualidade de vida. Para isso, Tecnologia Assistiva (TA) associada à eletroestimulação acionada por eletromiografia (EMG) em MS tem se tornado um recurso que contribui para a melhora da funcionalidade. Objetivo. Identificar os efeitos da intervenção de TA com eletroestimulação acionada por eletromiografia, na função motora de membro superior de pessoas com paresia devido a disfunção neurológica. Método. Trata-se de uma revisão sistemática, em que foram feitas buscas nas bases de dados: Pubmed, Scielo, Medline, Lilacs, Cochrane, PEDro, com a combinação dos termos em inglês relacionados: “hemiparesis”, “motor function”, “assistive technology”, “Upper limb”. Resultados. As buscas resultaram em 1.188 artigos, porém para inclusão, foram elegíveis apenas 3 artigos. A TA utilizada nas intervenções foram: robôs exoesqueleto mecânico vestível de forma livre ou fixos, ao qual usaram estimulação elétrica neuromuscular aplicada nos grupos musculares com base na tarefa desejada. Os estudos apresentaram efeitos na função motora de membro superior, coordenação muscular e tônus muscular de MS após a intervenção e depois de 3 meses. Conclusão. Verificou-se através dos estudos que os efeitos da TA acionada por EMG com a eletroestimulação pode melhorar a função motora de indivíduos com paresia em membro superior, prevenir a atrofia muscular, aumentar a força e reduzir o tônus muscular. Contudo, são necessários mais estudos que identifiquem os efeitos terapêuticos da TA a longo prazo na função dos membros superiores.
Métricas
Referências
Magalhães AL, Barros JL, Cardoso MG, Rocha NP, Faleiro RM, Souza LC, et al. Traumatic brain injury in Brazil: an epidemiological study and systematic review of the literature. Arq Neuropsiquiatr 2022;80:410-23. https://doi.org/10.1590/0004-282x-anp-2021-0035
Grumann AR, Martini AC, Forner S, Schroeller SD, Horongozo BD, Baroni GC. Characteristics of Encephalic Vascular Accident patients treated at a state reference center. Rev Pesqui 2017;9:315-20. https://doi.org/10.9789/2175-5361.2017.v9i2.315-320
Deluzio S, Vora I, Kumble S, Zink EK, Stevens RD, Bahouth MN. Feasibility of Early, Motor-Assisted Cycle Ergometry in Critically Ill Neurological Patients With Upper Limb Weakness and Variable Cognitive Status. Am J Phys Med Amp Rehabil 2018;97:e37-41. https://doi.org/10.1097/phm.0000000000000857
Powell MP, Verma N, Sorensen E, Carranza E, Boos A, Fields DP, et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat Med 2023;29:689-99. https://doi.org/10.1038/s41591-022-02202-6
Gane EM, Plinsinga ML, Brakenridge CL, Smits EJ, Aplin T, Johnston V. The Impact of Musculoskeletal Injuries Sustained in Road Traffic Crashes on Work-Related Outcomes: A Systematic Review. Int J Environ Res Public Health 2021;18:11504. https://doi.org/10.3390/ijerph182111504
Hatem SM, Saussez G, della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci 2016;10:442. https://doi.org/10.3389/fnhum.2016.00442
Song R, Tong KY, Hu X, Zhou W. Myoelectrically controlled wrist robot for stroke rehabilitation. J Neuroeng Rehabil 2013;10:52. https://doi.org/10.1186/1743-0003-10-52
Klamroth-Marganska V. Reabilitação de AVC: Robôs Terapêuticos e Dispositivos Assistivos. Avan Med Exp Biol 2018;1065:579-87. https://doi.org/10.1007/978-3-319-77932-4_35
Bastos PA, Silva MS, Ribeiro NM, Mota RD, Galvão Filho T. Tecnologia assistiva e políticas públicas no Brasil. Cad Bras Ter Ocupac 2023;31:1-17. https://doi.org/10.1590/2526-8910.ctoao260434011
Rose CG, O'Malley MK. Design of an assistive, glove-based exoskeleton. In: 2017 International Symposium on Wearable Robotics and Rehabilitation (Werob). Houston: IEEE; 2017. https://doi.org/10.1109/WEROB.2017.8383813
Hussain I, Spagnoletti G, Salvietti G, Prattichizzo D. Toward wearable supernumerary robotic fingers to compensate missing grasping abilities in hemiparetic upper limb. Int J Robot Res 2017;36:1414-36. https://doi.org/10.1177/0278364917712433
Meeker C, Park S, Bishop L, Stein J, Ciocarlie M. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke. IEEE Int Conf Rehabil Robot 2017;2017:1203-10. https://doi.org/10.1109/ICORR.2017.8009413
Van Ommeren AL, Smulders LC, Prange-Lasonder GB, Buurke JH, Veltink PH, Rietman JS. Assistive Technology for the Upper Extremities After Stroke: Systematic Review of Users’ Needs. JMIR Rehabil Assist Technol 2018;5:e10510. https://doi.org/10.2196/10510
Kaur G. Global need of Assistive Product and Assistive Technology for Individuals with Intellectual Disabilities: A Review. Int J Relig 2024;5:1653-61. https://doi.org/10.61707/0kecd230
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4
Cashin AG, McAuley JH. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J Physiother 2020;66:59. https://doi.org/10.1016/j.jphys.2019.08.005
Nam C, Rong W, Li W, Xie Y, Hu X, Zheng Y. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke. Front Neurol 2017;8:679. https://doi.org/10.3389/fneur.2017.00679
Qian Q, Hu X, Lai Q, Ng SC, Zheng Y, Poon W. Early Stroke Rehabilitation of the Upper Limb Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation-Robotic Arm. Front Neurol 2017;8:447. https://doi.org/10.3389/fneur.2017.00447
Hu XL, Tong RK, Ho NS, Xue JJ, Rong W, Li LS. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Neurorehabilit Neural Repair 2014;29:767-76. https://doi.org/10.1177/1545968314565510
Alessandrini M, Preynat-Seauve O, De Briun K, Pepper MS. Stem cell therapy for neurological disorders. South Afr Med J 2019;109:70. https://doi.org/10.7196/samj.2019.v109i8b.14009
Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019;18:459-80. https://doi.org/10.1016/s1474-4422(18)30499-x
Ladecola C, Buckwalter MS, Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Investig 2020;130:2777-88. https://doi.org/10.1172/jci135530
Zhuang JY, Ding L, Shu BB, Chen D, Jia J. Associated Mirror Therapy Enhances Motor Recovery of the Upper Extremity and Daily Function after Stroke: A Randomized Control Study. Neural Plast 2021;2021:1-9. https://doi.org/10.1155/2021/7266263
Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke 2022;17:18-29. https://doi.org/10.1177/17474930211065917
Högg S, Holzgraefe M, Wingendorf I, Mehrholz J, Herrmann C, Obermann M. Upper limb strength training in subacute stroke patients: study protocol of a randomised controlled trial. Trials 2019;20:168. https://doi.org/10.1186/s13063-019-3261-3
Flöel A, Werner C, Grittner U, Hesse S, Jöbges M, Knauss J, et al. Physical fitness training in Subacute Stroke (PHYS-STROKE) - study protocol for a randomised controlled trial. Trials 2014;15:93-100. https://doi.org/10.1186/1745-6215-15-45
Demain S, Burridge J, Ellis-Hill C, Hughes AM, Yardley L, Tedesco-Triccas L, et al. Assistive technologies after stroke: self-management or fending for yourself? A focus group study. BMC Health Serv Res 2013;13:334. https://doi.org/10.1186/1472-6963-13-334
Chen YW, Chiang WC, Chang CL, Lo SM, Wu CY. Comparative effects of EMG-driven robot-assisted therapy versus task-oriented training on motor and daily function in patients with stroke: a randomized cross-over trial. J Neuroeng Rehabil 2022;19:6. https://doi.org/10.1186/s12984-021-00961-w
Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N. Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans Neural Syst Rehabil Eng 2005;13:325-34. https://doi.org/10.1109/TNSRE.2005.850423
Hong YN, Roh J. Alterations in the preferred direction of individual arm muscle activation after stroke. Front Neurol 2023;14:1280276. https://doi.org/10.3389/fneur.2023.1280276
Nam C, Zhang B, Chow T, Ye F, Huang Y, Guo Z, et al. Home-based self-help telerehabilitation of the upper limb assisted by an electromyography-driven wrist/hand exoneuromusculoskeleton after stroke. J Neuroeng Rehabil 2021;18:1-18. https://doi.org/10.1186/s12984-021-00930-3
Saavedra-García A, Moral-Munoz JA, Lucena-Anton D. Mirror therapy simultaneously combined with electrical stimulation for upper limb motor function recovery after stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2021;35:39-50. https://doi.org/10.1177/0269215520951935
Springer S, Khamis S. Effects of functional electrical stimulation on gait in people with multiple sclerosis – A systematic review. Mult Scler Relat Disord 2017;13:4-12. https://doi.org/10.1016/j.msard.2017.01.010
Chasiotis A, Giannopapas V, Papadopoulou M, Chondrogianni M, Stasinopoulos D, Giannopoulos S, et al. The Effect of Neuromuscular Electrical Nerve Stimulation in the Management of Post-stroke Spasticity: A Scoping Review. Cureus 2022;14:e32001. https://doi.org/10.7759/cureus.32001
Knutson JS, Fu MJ, Sheffler LR, Chae J. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. Phys Med Rehabil Clin North Am 2015;26:729-45. https://doi.org/10.1016/j.pmr.2015.06.002
Kristensen MGH, Busk H, Wienecke T. Neuromuscular Electrical Stimulation Improves Activities of Daily Living Post Stroke: A Systematic Review and Meta-analysis. Arch Rehabil Res Clin Transl 2021;4:100167. https://doi.org/10.1016/j.arrct.2021.100167
Maaijwee NA, Arntz RM, Rutten-Jacobs LC, Schaapsmeerders P, Schoonderwaldt HC, van Dijk EJ, et al. Post-stroke fatigue and its association with poor functional outcome after stroke in young adults. J Neurol Neurosurg Amp Psychiatry 2014;86:1120-6. https://doi.org/10.1136/jnnp-2014-308784
Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med 2012;85:201-15. https://pubmed.ncbi.nlm.nih.gov/22737049/
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Vitória Nogueira Machado, Natália Viana Isoldino, Angélica Yumi Sambe, Marcel Antonio Delmonico Nogueira, Camila Costa de Araujo Pellizzari, Joyce Karla Machado da Silva

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Como Citar
Aprovado 2025-01-27
Publicado 2025-02-12
