A superdotação é uma neurodivergência

Autores

DOI:

https://doi.org/10.34024/rnc.2024.v32.16562

Palavras-chave:

inteligência, neurodivergência, neurociência, superdotado

Resumo

Introdução. No Brasil, o olhar para a superdotação na legislação é dado pela área da Educação e é baseado em um modelo teórico vago que permite interpretações diferentes. A Educação e a legislação voltadas para esse público devem ser pautadas pelo conhecimento científico sobre o fenômeno da superdotação, que tem bases neurobiológicas e, portanto, é uma condição transcultural. Objetivo. Apresentar resultados de pesquisas recentes na área da Neurociência que corroboram a superdotação como uma neurodivergência, que tem como base de funcionamento uma alta eficiência cognitiva. Método. Revisão bibliográfica dos estudos recentes (principalmente dos últimos 10 anos), a fim de reunir as evidências do campo da neurociência sobre neurodesenvolvimento e capacidade cognitiva. Resultados. Vários estudos comparativos de crianças superdotadas e crianças com desenvolvimento típico, evidenciam diferenças nas capacidades biológicas relacionadas às funções cognitivas, bem como precocidade em marcos do desenvolvimento, que provavelmente resultam de uma maturação cortical diferencial. Abordar superdotação fora da perspectiva de neurodivergência, extrapola conclusões das evidências empíricas, implicando em “teorias” sem validação científica. Os avanços nos estudos neurocientíficos indicam que a superdotação surge de um neurodesenvolvimento diferente do padrão (atípico), que não é disfuncional, pois resulta em funcionamento cognitivo mais eficiente. Conclusão. A Neuropsicologia consiste na área mais adequada para conduzir a identificação de pessoas superdotadas, por meio da psicometria e bom raciocínio clínico baseado em Neurociência, devido ao maior domínio teórico do funcionamento cerebral.

Métricas

Carregando Métricas ...

Referências

Coleman LJ. Point/counterpoint: Is consensus on a definition in the field possible, desirable, Necessary? Roeper Rev 2004;27:10-11. https://doi.org/10.1080/02783190409554280

Renzulli JS. What Makes Giftedness? Reexamining a Definition. Phi Delta Kappan 2011;92:81-8. https://doi.org/10.1177/003172171109200821

Gardner H. Frames of mind: A theory of multiple intelligences. New York: Basic Books, 1983.

Jolly JL. Historical Perspectives: Lewis Terman: Genetic Study of Genius—Elementary School Students. Gift Child Today 2008;31:27-33. https://doi.org/10.4219/gct-2008-689

Terman LM. Genetic studies of genius: Volume I. Mental and physical traits of a thousand gifted children. Redwood City: Stanford University Press, 1925.

Renzulli JS. What is This Thing Called Giftedness, and How Do We Develop It? A Twenty-Five Year Perspective. J Educ Gifted 1999;23:3-54. https://doi.org/10.1177/016235329902300102

Waterhouse L. Why multiple intelligences theory is a neuromyth. Front Psychol 2023;14:1217288. https://doi.org/10.3389/fpsyg.2023.1217288

De Gucht V, Woestenburg DHA, Backbier E. Do gifted individuals exhibit higher levels of Sensory Processing Sensitivity and what role do openness and neuroticism play in this regard? J Res Pers 2023;104:104376. https://doi.org/10.1016/j.jrp.2023.104376

McClain MC, Pfeiffer S. Identification of Gifted Students in the United States Today: A Look at State Definitions, Policies, and Practices. J Appl Sch Psychol 2012;28:59-88. https://doi.org/10.1080/15377903.2012.643757

Silverman LK The measurement of giftedness. In: Shavinina LV (ed). International Handbook on Giftedness. Chapter 48. Springer Netherlands; 2009; pp.947-70. https://doi.org/10.1007/978-1-4020-6162-2

Silverman LK. Assessment of giftedness. In: Pfeiffer SI (ed). Handbook of Giftedness in Children: Psychoeducational Theory, Research, and Best Practices. Chapter 12. Springer International Publishing; 2018; pp.183-207. https://doi.org/10.1007/978-3-319-77004-8_12

Government.no. Official Norwegian Reports (NOU) 2016: 14. More to gain: Students with higher learning potential. pp.19-21. (Acessado em: 08/04/2024). Disponível em: https://www.regjeringen.no/en/dokumenter/nou-2016-14/id2511246/

Terrasier JC. Intellectually precocious children. Arch Pediatr 2009;16:1603-6. https://doi.org/10.1016/j.arcped.2009.07.019

Vaivre-Douret L. Developmental and Cognitive Characteristics of “High-Level Potentialities” (Highly Gifted) Children. Int J Pediatr 2011;2011:420297. https://doi.org/10.1155/2011/420297

Deary IJ, Cox SR, Hill WD. Genetic variation, brain, and intelligence differences. Mol Psychiatry 2022;27:335-53. https://doi.org/10.1038/s41380-021-01027-y

Carman CA. Comparing Apples and Oranges: Fifteen Years of Definitions of Giftedness in Research. J Adv Acad 2013;24:52-70. https://doi.org/10.1177/1932202x12472602

McBee MT, Makel MC. The Quantitative Implications of Definitions of Giftedness. AERA Open 2019;5:1-13. https://doi.org/10.1177/2332858419831007

Guilmette TJ, Sweet JJ, Hebben N, Koltai D, Mahone EM, Spiegler BJ, et al. American Academy of Clinical Neuropsychology consensus conference statement on uniform labeling of performance test scores. Clin Neuropsychol 2020;34:437-53. https://doi.org/10.1080/13854046.2020.1722244

Crawford JR, Garthwaite PH. Percentiles Please: The Case for Expressing Neuropsychological Test Scores and Accompanying Confidence Limits as Percentile Ranks. Clin Neuropsychol 2009;23:193-204. https://doi.org/10.1080/13854040801968450

Pendarvis E, Howley C, Howley A. Renzulli’s Triad: School to Work for Gifted Students. J Educ Gifted 1999;23:75-86. https://doi.org/10.1177/016235329902300105

Reis SM, Renzulli JS. Giftedness. In: Glăveanu VP (eds). The Palgrave Encyclopedia of the Possible. London: Palgrave Macmillan; 2022; pp.624-31. https://doi.org/10.1007/978-3-030-90913-0_54

Ruf DL. 5 Levels of Gifted: School Issues and Educational Options. Tucson: Great Potential Press; 2009.

Torrijos-Muelas M, Sixto González-Víllora S, Bodoque-Osma AR. The Persistence of Neuromyths in the Educational Settings: A Systematic Review. Front Psychol 2021;11:591923. https://doi.org/10.3389/fpsyg.2020.591923

Gottfredson LS. Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence 1997;24:13-23. https://doi.org/10.1016/s0160-2896(97)90011-8

Ducan J, Seitz RJ, Kolodny J, Bor D, Herzog H, Ahmed A, et al. A Neural Basis for General Intelligence. Science 2000;289:457-60. https://doi.org/10.1126/science.289.5478.457

Duncan J, Assem M, Shashidhara S. Integrated Intelligence from Distributed Brain Activity. Trends Cogn Sci 2020;24:838-52. https://doi.org/10.1016/j.tics.2020.06.012

Basten U, Hilger K, Fiebach CJ. Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence 2015;51:10-27. https://doi.org/10.1016/j.intell.2015.04.009

Trzaskowski M, Yang J, Visscher P, Plomin R. DNA evidence for strong genetic stability and increasing heritability of intelligence from age 7 to 12. Mol Psychiatry 2014;19:380-4. https://doi.org/10.1038/mp.2012.191

Mollon J, Knowles EEM, Mathias SR, Gur R, Peralta JM, Weiner DJ, et al. Genetic influence on cognitive development between childhood and adulthood. Mol Psychiatry 2021;26:656-65. https://doi.org/10.1038/s41380-018-0277-0

Deary IJ, Yang J, Davies G, Harris SE, Tenesa A, Liewald D. et al. Genetic contributions to stability and change in intelligence from childhood to old age. Nature 2012;482:212-5. https://doi.org/10.1038/nature10781

Hulshoff Pol HE, Schnack HG, Posthuma D, Mandl RCW, Baaré WF, van Oel C, et al. Genetic Contributions to Human Brain Morphology and Intelligence. J Neurosci 2006;26:10235-42. https://doi.org/10.1523/JNEUROSCI.1312-06.2006

Haier RJ, White NS, Alkire MT. Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence 2003;31:429-41. https://doi.org/10.1016/s0160-2896(03)00025-4

Cantlon JF, Libertus ME, Pinel P, Dehaene S, Brannon EM, Pelphrey KA. The Neural Development of an Abstract Concept of Number. J Cogn Neurosci 2009;21:2217-29. https://doi.org/10.1162/jocn.2008.21159

De Cruz H. Why are some numerical concepts more successful than others? An evolutionary perspective on the history of number concepts. Evol Hum Behav 2006;27:306-23. https://doi.org/https://doi.org/10.1016/j.evolhumbehav.2006.02.001

Emerson RW, Cantlon JF. Early math achievement and functional connectivity in the fronto-parietal network. Dev Cogn Neurosci 2012;2:S139-51. https://doi.org/10.1016/j.dcn.2011.11.003

O’Muircheartaigh J, Dean DC, Dirks H, Waskiewicz N, Lehman K, Jerskey BA, et al. Interactions between white matter asymmetry and language during neurodevelopment. J Neurosci 2013;33:16170-7. https://doi.org/10.1523/JNEUROSCI.1463-13.2013

Kooijman V, Junge C, Johnson EK, Hagoort P, Cutler A. Predictive brain signals of linguistic development. Front Psychol 2013;4:25. https://doi.org/10.3389/fpsyg.2013.00025

Prat CS, Keller TA, Just MA. Individual Differences in Sentence Comprehension: A Functional Magnetic Resonance Imaging Investigation of Syntactic and Lexical Processing Demands. J Cogn Neurosci 2007;19:1950-63. https://doi.org/10.1162/jocn.2007.19.12.1950

Jung RE, Haier RJ. The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behav Brain Sci 2007;30:135-54. https://doi.org/10.1017/S0140525X07001185

Assem M, Glasser MF, Van Essen DC, Duncan J. A Domain-general Cognitive Core defined in Multimodally Parcellated Human. Cereb Cortex 2020;30:4361-80. https://doi.org/10.1093/cercor/bhaa023

Suprano I, Kocevar G, Stamile C, Hannoun S, Fourneret P, Revol O, et al. White matter microarchitecture and structural network integrity correlate with children intelligence quotient. Sci Rep 2020;10:20722. https://doi.org/10.1038/s41598-020-76528-x

Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D, et al. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry 2011;16:996-1005. https://doi.org/10.1038/mp.2011.85

Thompson P, Cannon T, Narr K, van Erp T, Poutanen VP, Huttunen M, et al. Genetic influences on brain structure. Nat Neurosci 2001;4:1253-8. https://doi.org/10.1038/nn758

Posthuma D, De Geus EJC, Baaré WFC, Hulshoff Pol HE, Kahn RS, Boomsma DI. The association between brain volume and intelligence is of genetic origin. Nat Neurosci 2002;5:83-4. https://doi.org/10.1038/nn0202-83

Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, Leeuw CA, et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet 2018;50:912-9. https://doi.org/10.1038/s41588-018-0152-6

Goriounova NA, Mansvelder HD. Genes, cells and brain areas of intelligence. Front Hum Neurosci 2019;13:44. https://doi.org/10.3389/fnhum.2019.00044

Chen TT, Kim J, Lam M, Chuang YF, Chiu YL, Lin SC, et al. Shared genetic architectures of educational attainment in East Asian and European populations. Nat Hum Behav 2024;8:562-75. https://doi.org/10.1038/s41562-023-01781-9

Judd N, Sauce B, Wiedenhoeft J, Tromp J, Chaarani B, Schliep A, et al. Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. PNAS 2020;117:12411-8. https://doi.org/10.1073/pnas.2001228117

Jansen PR, Nagel M, Watanabe K, Wei Y, Savage JE, Leeuw CA, et al. Genome-wide meta-analysis of brain volume identifies genomic loci and genes shared with intelligence. Nat Commun 2020;11:5606. https://doi.org/10.1038/s41467-020-19378-5

Coleman JRI, Bryois J, Gaspar HA, Jansen PR, Savage JE, Skene N, et al. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. Mol Psychiatry 2019;24:182-97. https://doi.org/10.1038/s41380-018-0040-6

Driessens SLW, Galakhova AA, Heyer DB, Pieterse IJ, Wilbers R, Mertens EJ, et al. Genes associated with cognitive ability and HAR show overlapping expression patterns in human cortical neuron types. Nat Commun 2023;14:4188. https://doi.org/10.1038/s41467-023-39946-9

Vareilles H, Rivière D, Mangin JF, Dubois J. Development of cortical folds in the human brain: An attempt to review biological hypotheses, early neuroimaging investigations and functional correlates. Dev Cogn Neurosci 2023;61:101249. https://doi.org/10.1016/j.dcn.2023.101249

Dubois J, Benders M, Borradori-Tolsa C, Cachia A, Lazeyras F, Leuchter RH, et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain 2008;131:2028-41. https://doi.org/10.1093/brain/awn137

Bae B, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E, et al. Evolutionarily Dynamic Alternative Splicing of GPR56 Regulates Regional Cerebral Cortical Patterning. Science 2014;343:764-8. https://doi.org/10.1126/science.1244392

Rapoport J, Gogtay N. Brain Neuroplasticity in Healthy, Hyperactive and Psychotic Children: Insights from Neuroimaging. Neuropsychopharmacol 2009;33:181-97. https://doi.org/10.1038/sj.npp.1301553

Knudsen EI. Sensitive Periods in the Development of the Brain and Behavior. J Cogn Neurosci 2004;16:1412-25. https://doi.org/10.1162/0898929042304796

Bruzzone SEP, Lumaca M, Brattico E, Vuust P, Kringelbach ML, Bonetti L. Dissociated brain functional connectivity of fast versus slow frequencies underlying individual differences in fluid intelligence: a DTI and MEG study. Sci Rep 2022;12:4746. https://doi.org/10.1038/s41598-022-08521-5

Aubry A, Gonthier C, Bourdin B. Explaining the high working memory capacity of gifted children: Contributions of processing skills and executive control. Acta Psychol 2021;218:103358. https://doi.org/10.1016/j.actpsy.2021.103358

Aubry A, Bourdin B. Alerting, orienting, and executive control in intellectually gifted children. Brain Behav 2021;11:e02148. https://doi.org/10.1002/brb3.2148

Fabio RA, Croce A, Calabrese C. Critical Thinking in Ethical and Neutral Settings in Gifted Children and Non-Gifted Children. Children 2023;10:74. https://doi.org/10.3390/children10010074

Deary IJ, Penke L, Johnson W. The neuroscience of human intelligence differences. Nat Rev Neurosci 2010;11:201-11. https://doi.org/10.1038/nrn2793.

Estrada E, Ferrer E, Román FJ, Karama S, Colom R. Time-lagged associations between cognitive and cortical development from childhood to early adulthood. Dev Psychol 2019;55:1338-52. https://doi.org/10.1037/dev0000716

Song M, Zhou Y, Li J, Liu Y, Tian L, Yu C, et al. Brain spontaneous functional connectivity and intelligence. NeuroImage 2008;41:1168-76. https://doi.org/10.1016/j.neuroimage.2008.02.036

Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, et al. Intellectual ability and cortical development in children and adolescents. Nature 2006;440:676-9. https://doi.org/10.1038/nature04513

Schnack HG, van Haren NEM, Brouwer RM, Evans A, Durston S, Boomsma DI, et al. Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 2015;25:1608-17. https://doi.org/10.1093/cercor/bht357

Tadayon E, Pascual-Leone A, Santarnecchi E. Differential contribution of cortical thickness, surface area, and gyrification to fluid and crystallized intelligence. Cereb Cortex 2020;30:215-25. https://doi.org/10.1093/cercor/bhz082

Kuhn T, Blades R, Gottlieb L, Knudsen K, Ashdown C, Martin-Harris L, et al. Neuroanatomical differences in the memory systems of intellectual giftedness and typical development. Brain Behav 2021;11:e2348. https://doi.org/10.1002/brb3.2348

Haier RJ. Neuroscience of Intelligence. 2nd ed. Cambridge: Cambridge University Press; 2023.

Downloads

Publicado

2024-08-01

Edição

Seção

Artigos de Revisão

Como Citar

1.
Fernandes FR. A superdotação é uma neurodivergência. Rev Neurocienc [Internet]. 1º de agosto de 2024 [citado 13º de dezembro de 2025];32:1-28. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/16562
Recebido 2024-04-13
Aprovado 2024-07-17
Publicado 2024-08-01