Effects of olive leaf on inflammation caused by metabolic disorders: a systematic review
DOI:
https://doi.org/10.34024/rnc.2024.v32.16534Keywords:
Olive Leaf, Inflammation, Systematic Review, Metabolic Disorders, Experimental StudiesAbstract
Introduction. Chronic low-grade inflammation is present in metabolic disorders such as obesity, diabetes and liver disease, and can result in lipid imbalance, oxidative stress, insulin resistance and inflammation. Olive leaves, rich in polyphenols, have beneficial effects, including antioxidant and anti-inflammatory actions. Objective. To evaluate the effects of olive leaf on inflammation caused by metabolic disorders in rats. Method. A systematic review was conducted using three electronic databases: PubMed, Scopus and Web of Science. After applying the inclusion and exclusion criteria. The evidence analysis was carried out by applying the robust tool SYRCLE’s Risk of Bias (RoB) to assess the risk of bias of the selected articles. Results. A total of 11 studies were included until August 2019 to compose this systematic review. Conclusion. Olive leaf administered to rats appears to reduce inflammatory markers in obesity, diabetes and liver disease, possibly due to the antioxidant and anti-inflammatory effects of the polyphenols present. However, current published studies are limited, requiring continuity and improvement of the intervention methodology used. More studies are needed to investigate the effects of olive leaf on inflammation in rats with metabolic disorders.
Metrics
References
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017;542:177-85. https://doi.org/10.1038/nature21363
Ortega-Gómez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med 2013;5:661-74. https://doi.org/10.1002/emmm.201202382
Netzer N, Gatterer H, Faulhaber M, Burtscher M, Pramsohler S, Pesta D. Hypoxia, oxidative stress and fat. Biomolecules 2015;5:1143-50. https://doi.org/10.3390/biom5021143
Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 2015;16:378-400. https://doi.org/10.3390/ijms16010378
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest 2019;42:1257-72. https://doi.org/10.1007/s40618-019-01052-3
Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired adipogenesis and dysfunctional AT in human hypertrophic obesity. Physiol Rev 2018;98:1911-41. https://doi.org/10.1152/physrev.00034.2017
Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 2016;15:639-60. https://doi.org/10.1038/nrd.2016.75
Brink WVD, Bilsen JV, Salic K, Hoevenaars FPM, Verschuren L, Kleemann R, et al. Current and Future Nutritional Strategies to Modulate Inflammatory Dynamics in Metabolic Disorders. Front Nutr 2019;6:129. https://doi.org/10.3389/fnut.2019.00129
Schmidt AM. Highlighting Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2017;38:e1-8. https://doi.org/10.1161/atvbaha.117.310221
Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci 2019;20:2358. https://doi.org/10.3390/ijms20092358
Saisho Y. Importance of Beta Cell Function for the Treatment of Type 2 Diabetes. J Clin Med 2014;3:923-43. https://doi.org/10.1111/j.1742-1241.2007.01360.x
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 2019;11:45-63. https://pubmed.ncbi.nlm.nih.gov/31333808/
Emmendoerffer A, Hecht M, Boeker T, Mueller M, Heinrich U. Role of inflammation in chemical-induced lung cancer. Toxicol Lett 2000;112:185-91. https://doi.org/10.1016/S0378-4274(99)00285-4
Jurkovič S, Osredkar J, Marc J. Molecular impact of glutathione peroxidases in antioxidant processes. Biochem Med (Zagreb) 2008;18:162-74. https://doi.org/10.11613/BM.2008.016
Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 2010;51:679-89. https://doi.org/10.1002/hep.23280
Vuppalanchi R, Chalasani N. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology 2009;49:306-17. https://doi.org/10.1002/hep.22603
Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: Summary of an AASLD Single Topic Conference. Hepatology 2003;37:1202-19. https://doi.org/10.1053/jhep.2003.50193
Conlon BA, Beasley JM, Aebersold K, Jhangiani SS, Wylie-Rosett J. Nutritional management of insulin resistance in nonalcoholic fatty liver disease (NAFLD). Nutrients 2013;11:4093-114. https://doi.org/10.3390/nu5104093
Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: Beyond steatosis and inflammation. Int J Mol Sci 2014;15:8591-638. https://doi.org/10.3390/ijms15058591
Asahi J, Kamo H, Baba R, Doi Y, Yamashita A, Murakami D, et al. Bisphenol A induces endoplasmic reticulum stress-associated apoptosis in mouse non-parenchymal hepatocytes. Life Sci 2010;87:431-8. https://doi.org/10.1016/j.lfs.2010.08.007
Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, et al. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 2007;24:178-98. https://doi.org/10.1016/j.reprotox.2007.05.010
Zhang YH, Campbell SA, Karthikeyan S. Finite element analysis of hollow out-of-plane HfO2 microneedles for transdermal drug delivery applications. Biomed Microdev 2018;20:19. https://doi.org/10.1007/s10544-018-0262-z
Sharifi-Rad M, Kumar NVA, Zucca P, Varoni EM, Dini L, Panzarini E. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020;11:694. https://doi.org/10.3389/fphys.2020.00694
Nicolì F, Negro C, Vergine M, Aprile A, Nutricati E, Sabella E, et al. Evaluation of Phytochemical and Antioxidant Properties of 15 Italian. Molecules 2019;24:1998. https://doi.org/10.3390/molecules24101998
El-Rahman HSMA. The effect of olive leaf extract and α-tocopherol on nephroprotective activity in rats. J Nutr Food Sci 2016;6:479. https://doi.org/10.4172/2155-9600.10
Şahin S, Bilgin M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. J Sci Food Agricult 2018;98:1271-9. https://doi.org/10.1002/jsfa.8619
Guex CG, Reginato FZ, De Jesus PR, Brondani JC, Lopes GHH, Bauermann LF. Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J Ethnopharmacol 2019;235:1-7. https://doi.org/10.1016/j.jep.2019.02.001
Vogel P, Kasper I, Garavaglia J, Zani V, Souza D, Dal Bosco S. Polyphenols benefits of olive leaf (Olea europaea L) to human health. Nutr Hospit 2014;31:1427-33. https://doi.org/10.3305/nh.2015.31.3.8400
Raederstorff D. Antioxidant activity of olive polyphenols in human: a review. Int J Vitam Nutr Res 2009;79:152-65. https://doi.org/10.1024/0300-9831.79.3.152
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Plos Med 2009;6:e1000100. https://doi.org/10.1371/journal.pmed.1000100
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014;14:43. https://doi.org/10.1186/1471-2288-14-43
Al-Attar AM, Alsalmi FA. Effect of Olea europaea leaves extract on streptozotocin induced diabetes in male albino rats. Saudi J Biol Sci 2019;26:118-28. https://doi.org/10.1016/j.sjbs.2017.03.002
Hadrich F, Mahmoudi A, Bouallagui Z, Feki I, Isoda H, Feve B, et al. Evaluation of hypocholesterolemic effect of oleuropein in cholesterol-fed rats. Chem Biol Interac 2016;252:54-60. https://doi.org/10.1016/j.cbi.2016.03.026
Afify AMR, El-Beltagi HS, Fayed SA, El-Ansary AE. In vivo correlation of olive leaves extract on some oxidative stress markers in streptozotocin-induced diabetes mellitus in rats. Grasas Aceites 2018;69:e243. https://doi.org/10.3989/gya.1104172
Poudyal H, Campbell F, Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr 2010;140:946-53. https://doi.org/10.3945/jn.109.117812
Liu YN, Jung JH, Park H, Kim H. Olive leaf extract suppresses messenger RNA expression of proinflammatory cytokines and enhances insulin receptor substrate 1 expression in the rats with streptozotocin and high-fat diet-induced diabetes. Nutr Res 2014;34:450-7. https://doi.org/10.1016/j.nutres.2014.04.007
Omagari K, Kato S, Tsuneyama K, Hatta H, Sato M, Hamasaki M, et al. Olive leaf extract prevents spontaneous occurrence of non-alcoholic steatohepatitis in SHR/NDmcr-cp rats. Pathology 2010;42:66-72. https://doi.org/10.3109/00313020903434389
Omagari K, Kato S, Tsuneyama K, Hatta H, Ichimura M, Urata C, et al. The Effect of Olive Leaf Extract on Hepatic Fat Accumulation in Sprague-Dawley Rats Fed a High-fat Diet. Acta Med Nagasaki 2010;55:29-39. https://doi.org/10.11343/AMN.55.29
Van der Stelt I, Hans EFH, Swarts HJM, Vervoort JJM, Hoving L, Skaltsounis L, et al. Nutraceutical oleuropein supplementation prevents high fat diet-induced adiposity in mice. J Funct Foods 2015;14:702-15. https://doi.org/10.1016/j.jff.2015.02.040
Mahmoudi A, Hadrich F, Feki I, Ghorbel H, Bouallagui Z, Marrekchi R, et al. Oleuropein and hydroxytyrosol rich extracts from olive leaves attenuate liver injury and lipid metabolism disturbance in bisphenol A-treated rats. Food Funct 2018:9:3220-34. https://doi.org/10.1039/c8fo00248g
Park JH, Jung JH, Yang JY, Kim HS. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice. Nutr Res 2013;33:942-51. https://doi.org/10.1016/j.nutres.2013.07.011
Abella V, Scotece M, Conde J, Pino J, Gonzalez-Gay MA, Gómes-Reino JJ, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 2017;13:100-9. https://doi.org/10.1038/nrrheum.2016.209
Zhao X, Dong Y, Zhang J, Li D, Hu G, Yao J, et al. Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells. Cell Death Dis 2016;7:e2188. https://doi.org/10.1038/cddis.2016.68
Conde J, Scotece M, López V, Abella V, Hermida M, Pino J, et al. Differential expression of adipokines in infrapatellar fat pad (IPFP) and synovium of osteoarthritis patients and healthy individuals. Ann Rheum Dis 2013;73:631. https://doi.org/10.1136/annrheumdis-2013-204189
Yamashita Y, Wang L, Wang L, Tanaka Y, Zhang T, Ashida H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct 2014;5:2420-9. https://doi.org/10.1039/C4FO00095A
Ahamad J, Toufeeq I, Khan MA, Ameen MSM, Anwer ET, Uthirapathy S, et al. Oleuropein: A natural antioxidant molecule in the treatment of metabolic syndrome. Phytother Res 2019;33:3112-28. https://doi.org/10.1002/ptr.6511
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Larissa Slongo Faccioli, Anna Caroline Cristofoli Bertoletti2 Bertoletti, Isabella Rosa da Mata, Kathleen Krüger Peres, Juliano Garavaglia, Matheus Büttner Borges, Simone Morelo Dal Bosco

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Accepted 2024-09-18
Published 2024-12-17
