Frequência de escoliose em miopatias: revisão de escopo

Autores

DOI:

https://doi.org/10.34024/rnc.2024.v32.16464

Palavras-chave:

Escoliose, Miopatias, Miopatias Congênitas

Resumo

Introdução. A escoliose é caracterizada como um desvio lateral na coluna vertebral, que pode ser acompanhado de componente rotacional, resultando em uma curvatura com angulação variável, conforme medida pelo ângulo de Cobb. Escoliose é um achado descrito em doenças neuromusculares que levam a comprometimento de musculatura paravertebral, que deve ser monitorada para detecção e intervenção precoces. Assim, o objetivo desta revisão de literatura é investigar a ocorrência e frequência de escoliose nas várias miopatias, para aumentar o grau de suspeição clínica e intervenção no momento adequado. Método. As buscas foram realizadas no banco de dados da PubMed, para artigos publicados entre 1965-2023, com as palavras-chave “myopathy” e “scoliosis”. 112 dos 229 artigos originais encontrados atenderam aos critérios de inclusão e todos os artigos selecionados foram avaliados criticamente por dois avaliadores independentes.  As seguintes variáveis foram selecionadas desses artigos: autor, ano, tipo de miopatia, mutação associada, idade, sexo, severidade da escoliose e intervenção. Resultados. As miopatias associadas à escoliose nessa revisão foram, em ordem de frequência, as distrofias musculares congênitas (14-100%), as distrofias musculares progressivas como a forma de Duchenne (100%) e as miopatias congênitas (5-100%). A quantificação da intensidade da escoliose teve predominância de casos severos, seguido de casos leves. Em relação às intervenções, foram relatadas a fisioterapia e a intervenção cirúrgica, na maioria dos casos. Conclusão. Escoliose é um achado frequente em miopatias, porém com poucos dados prospectivos da intensidade e do impacto das intervenções em grande parte delas. Mais estudo são necessários nessa área.

Métricas

Carregando Métricas ...

Referências

Luciano RP, Puertas EB, Martins DE, Faloppa F, Del Curto D, Rodrigues LM, et al. Adolescent idiopathic scoliosis without limb weakness: a differential diagnosis of core myopathy? BMC Musculoskelet Disord 2015;16:179. https://doi.org/10.1186/s12891-015-0629-8

Wajchenberg M, Martins DE, Puertas EB. Aspectos genéticos da escoliose idiopática do adolescente. Columna 2012;11:234-6. https://doi.org/10.1590/S1808-18512012000300010

Hresko MT. Clinical practice. Idiopathic scoliosis in adolescents. N Engl J Med 2013;368:834-41. https://doi.org/10.1056/NEJMcp1209063

Wajchenberg M, Martins DE, Luciano RP, Puertas EB, Del Curto D, Schmidt B, et al. Histochemical analysis of paraspinal rotator muscles from patients with adolescent idiopathic scoliosis: a cross-sectional study. Medicine (Baltimore) 2015;94:e598. https://doi.org/10.1097/MD.0000000000000598

Adam CJ, Izatt MT, Harvey JR, Askin GN. Variability in Cobb angle measurements using reformatted computerized tomography scans. Spine 2005;30:1664-9. https://doi.org/10.1097/01.brs.0000169449.68870

LoMauro A, D'Angelo MG, Aliverti A. Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. Ther Clin Risk Manag 2015;11:1475-88. https://doi.org/10.2147/TCRM.S55889

Espírito Santo A, Guimarães LV, Galera MF. Prevalência de escoliose idiopática e variáveis associadas em escolares do ensino fundamental de escolas municipais de Cuiabá, MT, 2002. Rev Bras Epidemiol 2011;14:347-56. https://doi.org/10.1590/s1415-790x2011000200015

Dofash LNH, Monahan GV, Servián-Morilla E, Rivas E, Faiz F, Sullivan P, et al. A KLHL40 3' UTR splice-altering variant causes milder NEM8, an under-appreciated disease mechanism. Hum Mol Genet 2023;32:1127-36. https://doi.org/10.1093/hmg/ddac272

Moreno CAM, Artilheiro MC, Fonseca ATQSM, Camelo CG, Medeiros GC, Sassi FC, et al. Clinical Manifestation of Nebulin-Associated Nemaline Myopathy. Neurol Genet 2023;9:e200056. https://doi.org/10.1212/NXG.0000000000200056

Wunderlich G, Brunn A, Daimagüler HS, Bozoglu T, Fink GR, Lehmann HC, et al. Long term history of a congenital core-rod myopathy with compound heterozygous mutations in the Nebulin gene. Acta Myol 2018;37:121-7. https://pmc.ncbi.nlm.nih.gov/articles/PMC6060425/pdf/am-2018-02-121.pdf

Polastri M, Schifino G, Tonveronachi E, Tavalazzi F. Respiratory treatment in a patient with nemaline myopathy. Clin Pract 2019;9:1209. https://doi.org/10.4081/cp.2019.1209

Michael E, Hedberg-Oldfors C, Wilmar P, Visuttijai K, Oldfors A, Darin N. Long-term follow-up and characteristic pathological findings in severe nemaline myopathy due to LMOD3 mutations. Neuromuscul Disord 2019;29:108-13. https://doi.org/10.1016/j.nmd.2018.12.009

Topaloglu H, Gögüs S, Yalaz K, Kücükali T, Serdaroglu A. Two siblings with nemaline myopathy presenting with rigid spine syndrome. Neuromuscul Disord 1994;4:263-7. https://doi.org/10.1016/0960-8966(94)90028-0

Fukunaga H, Osame M, Igata A. A case of nemaline myopathy with ophthalmoplegia and mitochondrial abnormalities. J Neurol Sci 1980;46:169-77. https://doi.org/10.1016/0022-510x(80)90075-1

Gurgel-Giannetti J, Souza LS, Yamamoto GL, Belisario M, Lazar M, Campos W, et al. Nemaline Myopathy in Brazilian Patients: Molecular and Clinical Characterization. Int J Mol Sci 2022;23:11995. https://doi.org/10.3390/ijms231911995

Scoto M, Cullup T, Cirak S, Yau S, Manzur AY, Feng L, et al. Nebulin (NEB) mutations in a childhood onset distal myopathy with rods and cores uncovered by next generation sequencing. Eur J Hum Genet 2013;21:1249-52. https://doi.org/10.1038/ejhg.2013.31

Sandaradura SA, Bournazos A, Mallawaarachchi A, Cummings BB, Waddell LB, Jones KJ, et al. Nemaline myopathy and distal arthrogryposis associated with an autosomal recessive TNNT3 splice variant. Hum Mutat 2018;39:383-8. https://doi.org/10.1002/humu.23385

Aghbolaghi AG, Lechpammer M. A rare case of centronuclear myopathy with DNM2 mutation: genotype-phenotype correlation. Autops Case Rep 2017;7:43-8. https://doi.org/10.4322/acr.2017.020

Li N, Zhao Z, Shen H, Bing Q, Guo X, Hu J. MYH7 mutation associated with two phenotypes of myopathy. Neurol Sci 2018;39:333-9. https://doi.org/10.1007/s10072-017-3192-2

Ferreiro A, Estournet B, Chateau D, Romero NB, Laroche C, Odent S, et al. Multi-minicore disease--searching for boundaries: phenotype analysis of 38 cases. Ann Neurol 2000;48:745-57. https://doi.org/10.1002/1531-8249(200011)48:5%3C745::AID-ANA8%3E3.0.CO;2-F

Franken DK, Bouman K, Reumers SFI, Braun F, Spillane J, Pennings M, et al. Neuromuscular Features in XL-MTM Carriers: A Cross-sectional Study in an Unselected Cohort. Neurology 2022;99:e2223-33. https://doi.org/10.1212/WNL.0000000000201084

Flaherty DC, Lonner B, Gal JS. Successful Management of a Patient With X-Linked Myotubular Myopathy for Scoliosis Surgery and Previous Cardiac Arrest After Prone Positioning: A Case Report. A A Pract 2018;10:340-2. https://doi.org/10.1213/XAA.0000000000000719

Jungbluth H, Sewry CA, Buj-Bello A, Kristiansen M, Ørstavik KH, Kelsey A, et al. Early and severe presentation of X-linked myotubular myopathy in a girl with skewed X-inactivation. Neuromuscul Disord 2003;13:55-9. https://doi.org/10.1016/s0960-8966(02)00194-3

Karunaratne K, Wade C, Lehovsky J, Viegas S. Spinal surgery for a late-onset axial myopathy. BMJ Case Rep 2021;14:e240738. https://doi.org/10.1136/bcr-2020-240738

Hsueh SJ, Lee NC, Yang SH, Lin HI, Lin CH. A limb-girdle myopathy phenotype of RUNX2 mutation in a patient with cleidocranial dysplasia: a case study and literature review. BMC Neurol 2017;17:2. https://doi.org/10.1186/s12883-016-0781-2

Jeong HN, Park HJ, Lee JH, Shin HY, Kim SH, Kim SM, et al. Clinical and Pathologic Findings of Korean Patients with RYR1-Related Congenital Myopathy. J Clin Neurol 2018;14:58-65. https://doi.org/10.3988/jcn.2018.14.1.58

Brackmann F, Türk M, Gratzki N, Rompel O, Jungbluth H, Schröder R, et al. Compound heterozygous RYR1 mutations in a preterm with arthrogryposis multiplex congenita and prenatal CNS bleeding. Neuromuscul Disord 2018;28:54-8. https://doi.org/10.1016/j.nmd.2017.09.009

Ferreiro A, Monnier N, Romero NB, Leroy JP, Bönnemann C, Haenggeli CA, et al. A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol 2002;51:750-9. https://doi.org/10.1002/ana.10231

Merlini L, Mattutini P, Bonfiglioli S, Granata C. Non-progressive central core disease with severe congenital scoliosis: a case report. Dev Med Child Neurol 1987;29:106-9. https://doi.org/10.1111/j.1469-8749.1987.tb02114.x

Mertz KD, Jost B, Glatzel M, Min K. Progressive scoliosis in central core disease. Eur Spine J 2005;14:900-5. https://doi.org/10.1007/s00586-005-0938-y

Quinlivan RM, Muller CR, Davis M, Laing NG, Evans GA, Dwyer J, et al. Central core disease: clinical, pathological, and genetic features. Arch Dis Child 2003;88:1051-5. https://doi.org/10.1136/adc.88.12.1051

Sestero AM, Perra JH. A case report of severe kyphoscoliosis and autofusion of the posterior elements in two siblings with central core disease. Spine 2005;30:E50-5. https://doi.org/10.1097/01.brs.0000150648.18222.f4

Imagama S, Kawakami N, Tsuji T, Ohara T, Ishiguro N. Kyphoscoliosis associated with congenital neuromuscular disease with uniform type 1 fibers. Eur Spine J 2012;21(Suppl 4):S499-504. https://doi.org/10.1007/s00586-011-2128-4

Sakamoto HM, Yoshioka M, Tsuji M, Kuroki S, Higuchi Y, Nonaka I, et al. A case of congenital neuromuscular disease with uniform type 1 fibers. Brain Dev 2006;28:202-5. https://doi.org/10.1016/j.braindev.2005.06.008

Moon YJ, Park J, Kim JR, Lee SY, Lee J, Cho YG, et al. Gene Panel Sequencing Identifies a Novel RYR1 p.Ser2300Pro Variant as Candidate for Malignant Hyperthermia with Multi-Minicore Myopathy. Genes (Basel) 2022;13:1726. https://doi.org/10.3390/genes13101726

Beecroft SJ, van de Locht M, de Winter JM, Ottenheijm CA, Sewry CA, Mohammed S, et al. Recessive MYH7-related myopathy in two families. Neuromuscul Disord 2019;29:456-67. https://doi.org/10.1016/j.nmd.2019.04.002

Jungbluth H, Zhou H, Hartley L, Halliger-Keller B, Messina S, Longman C, et al. Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology 2005;65:1930-5. https://doi.org/10.1212/01.wnl.0000188870.37076.f2

Jungbluth H, Sewry C, Brown SC, Manzur AY, Mercuri E, Bushby K, et al. Minicore myopathy in children: a clinical and histopathological study of 19 cases. Neuromuscul Disord 2000;10:264-73. https://doi.org/10.1016/s0960-8966(99)00125-x

Myong NH, Kang YK, Chi JG, Suk SI. Multicore myopathy--a case report. J Korean Med Sci 1993;8:312-7. https://doi.org/10.3346/jkms.1993.8.4.312

Pellengahr C, Krödel A, Müller-Höcker J, Pongratz D. Rapidly progredient scoliosis associated with multicore disease. Arch Orthop Trauma Surg 1998;117:411-4. https://doi.org/10.1007/s004020050282

Rowe PW, Eagle M, Pollitt C, Bullock RE, Bushby KM. Multicore myopathy: respiratory failure and paraspinal muscle contractures are important complications. Dev Med Child Neurol 2000;42:340-3. https://doi.org/10.1017/s0012162200000591

Velutha Mannil S, Reddy S, Romanelli EB. Peripartum Management of Congenital Fiber Type Disproportion Myopathy with Severe Restrictive Lung Disease. Cureus 2022;14:e32019. https://doi.org/10.7759/cureus.32019

Xu H, Liu H, Chen T, Song B, Zhu J, Liu X, et al. The R168G heterozygous mutation of tropomyosin 3 (TPM3) was identified in three family members and has manifestations ranging from asymptotic to serve scoliosis and respiratory complications. Genes Dis 2020;8:715-20. https://doi.org/10.1016/j.gendis.2020.01.010

Xu H, Liu H, Chen T, Song B, Zhu J, Liu X, et al. The R168G heterozygous mutation of tropomyosin 3 (TPM3) was identified in three family members and has manifestations ranging from asymptotic to serve scoliosis and respiratory complications. Genes Dis 2020;8:715-20. https://doi.org/10.1016/j.gendis.2020.01.010

Citirak G, Witting N, Duno M, Werlauff U, Petri H, Vissing J. Frequency and phenotype of patients carrying TPM2 and TPM3 gene mutations in a cohort of 94 patients with congenital myopathy. Neuromuscul Disord 2014;24:325-30. https://doi.org/10.1016/j.nmd.2013.12.008

Clancy RR, Kelts KA, Oehlert JW. Clinical variability in congenital fiber type disproportion. J Neurol Sci 1980;46:257-66. https://doi.org/10.1016/0022-510x(80)90050-7

Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, et al. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 2006;59:546-52. https://doi.org/10.1002/ana.20761

Munot P, Lashley D, Jungbluth H, Feng L, Pitt M, Robb SA, et al. Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord 2010;20:796-800. https://doi.org/10.1016/j.nmd.2010.07.274

Gerdes AM, Petersen MB, Schrøder HD, Wulff K, Brøndum-Nielsen K. Congenital myopathy with fiber type disproportion: a family with a chromosomal translocation t(10;17) may indicate candidate gene regions. Clin Genet 1994;45:11-6. https://doi.org/10.1111/j.1399-0004.1994.tb03982.x

Schreckenbach T, Schröder JM, Voit T, Abicht A, Neuen-Jacob E, Roos A, et al. Novel TPM3 mutation in a family with cap myopathy and review of the literature. Neuromuscul Disord 2014;24:117-24. https://doi.org/10.1016/j.nmd.2013.10.002

Scoto M, Cirak S, Mein R, Feng L, Manzur AY, Robb S, et al. SEPN1-related myopathies: clinical course in a large cohort of patients. Neurology 2011;76:2073-8. https://doi.org/10.1212/WNL.0b013e31821f467c

Telegrafi A, Webb BD, Robbins SM, Speck-Martins CE, FitzPatrick D, Fleming L, et al. Identification of STAC3 variants in non-Native American families with overlapping features of Carey-Fineman-Ziter syndrome and Moebius syndrome. Am J Med Genet A 2017;173:2763-71. https://doi.org/10.1002/ajmg.a.38375

Grzybowski M, Schänzer A, Pepler A, Heller C, Neubauer BA, Hahn A. Novel STAC3 Mutations in the First Non-Amerindian Patient with Native American Myopathy. Neuropediatrics 2017;48:451-5. https://doi.org/10.1055/s-0037-1601868

Mock S, Jabaut J, Barra D, Angelo T, Benjamin J. Challenges in Obstetric Anesthesia in a Parturient With Native American Myopathy: A Case Report. A A Pract 2021;15:e01541. https://doi.org/10.1213/XAA.0000000000001541

Croci C, Traverso M, Baratto S, Iacomino M, Pedemonte M, Caroli F, et al. Congenital myopathy associated with a novel mutation in MEGF10 gene, myofibrillar alteration and progressive course. Acta Myol 2022;41:111-16. https://doi.org/10.36185/2532-1900-076

Almuhaizea M, Dabbagh O, Alqudairy H, AlHargan A, Alotaibi W, Sami R, et al. Phenotypic Variability of MEGF10 Variants Causing Congenital Myopathy: Report of Two Unrelated Patients from a Highly Consanguineous Population. Genes (Basel) 2021;12:1783. https://doi.org/10.3390/genes12111783

Liewluck T, Milone M, Tian X, Engel AG, Staff NP, Wong LJ. Adult-onset respiratory insufficiency, scoliosis, and distal joint hyperlaxity in patients with multiminicore disease due to novel Megf10 mutations. Muscle Nerve 2016;53:984-8. https://doi.org/10.1002/mus.25054

Boyden SE, Mahoney LJ, Kawahara G, Myers JA, Mitsuhashi S, Estrella EA, et al. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics 2012;13:115-24. https://doi.org/10.1007/s10048-012-0315-z

Feichtinger RG, Mucha BE, Hengel H, Orfi Z, Makowski C, Dort J, et al. Biallelic variants in the transcription factor PAX7 are a new genetic cause of myopathy. Genet Med 2019;21:2521-31. https://doi.org/10.1038/s41436-019-0532-z

Baumann M, Giunta C, Krabichler B, Rüschendorf F, Zoppi N, Colombi M, et al. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am J Hum Genet 2012;90:201-16. https://doi.org/10.1016/j.ajhg.2011.12.004

Rocha J, Taipa R, Melo Pires M, Oliveira J, Santos R, Santos M. Ryanodine myopathies without central cores--clinical, histopathologic, and genetic description of three cases. Pediatr Neurol 2014;51:275-8. https://doi.org/10.1016/j.pediatrneurol.2014.04.024

Luo MC, Li QX, Yin WF, Duan WW, Bi FF, Zhang N, et al. Congenital myopathy with type 1 fiber predominance in two children. Zhongguo Dang Dai Er Ke Za Zhi 2011;13:499-502. http://www.zgddek.com/EN/abstract/abstract12585.shtml

Lossos A, Baala L, Soffer D, Averbuch-Heller L, Dotan S, Munnich A, et al. A novel autosomal recessive myopathy with external ophthalmoplegia linked to chromosome 17p13.1-p12. Brain 2005;128:42-51. https://doi.org/10.1093/brain/awh338

Ma LL, Zhang XH, Huang YG, Zhang QX. Anesthetic management of a patient with Freeman-Sheldon syndrome: case report and literature review. Chin Med J 2012;125:390-1. http://doi.org/10.3760/cma.j.issn.0366-6999.2012.02.040

Natera-de Benito D, Ortez C, Jou C, Jimenez-Mallebrera C, Codina A, Carrera-García L, et al. The Phenotype and Genotype of Congenital Myopathies Based on a Large Pediatric Cohort. Pediatr Neurol 2021;115:50-65. https://doi.org/10.1016/j.pediatrneurol.2020.11.002

Agrawal A, Dhawale T, Kaur V, Passi GR. Case Report of Congenital Kyphoscoliosis with Myotonic Dystrophy Type 1: Perioperative and Anesthetic Considerations. J Pediatr Neurosci 2021;16:281-4. https://doi.org/10.4103/jpn.JPN_119_20

Nedelcu T, Georgescu I. Evaluation of the Unit Rod surgical instrumentation in Duchenne scoliosis. A retrospective study. J Med Life 2016;9:437-43. https://pmc.ncbi.nlm.nih.gov/articles/PMC5141408/

Mota IA, Correia CDC, Fontana PN, Carvalho AAS. Reducing body myopathy - A new pathogenic FHL1 variant and literature review. Neuromuscul Disord 2021;31:847-53. https://doi.org/10.1016/j.nmd.2021.03.013

Chen L, Lin HX, Yang XX, Chen DF, Dong HL, Yu H, et al. Clinical and genetic characteristics of Chinese patients with reducing body myopathy. Neuromuscul Disord 2021;31:442-9. https://doi.org/10.1016/j.nmd.2021.02.009

Schessl J, Taratuto AL, Sewry C, Battini R, Chin SS, Maiti B, et al. Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1. Brain 2009;132:452-64. https://doi.org/10.1093/brain/awn325

Li JY, Liu SZ, Zheng DF, Zhang YS, Yu M. Collagen VI-related myopathy with scoliosis alone: A case report and literature review. World J Clin Cases 2021;9:5302-12. https://doi.org/10.12998/wjcc.v9.i19.5302

Saito Y, Baba S, Komaki H, Nishino I. A 7-year-old female with hypotonia and scoliosis. Brain Pathol 2022;32:e13076. https://doi.org/10.1111/bpa.13076

Silverstein RS, Wang DD, Haruno LS, Lotze TE, Scott AC, Rosenfeld SB. Bethlem Myopathy (Collagen VI-Related Dystrophies): A Retrospective Cohort Study on Musculoskeletal Pathologies and Clinical Course. J Pediatr Orthop 2023;43:e163-7. https://doi.org/10.1097/BPO.0000000000002283

Barp A, Laforet P, Bello L, Tasca G, Vissing J, Monforte M, et al. European muscle MRI study in limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A). J Neurol 2020;267:45-56. https://doi.org/10.1007/s00415-019-09539-y

Villar-Quiles RN, von der Hagen M, Métay C, Gonzalez V, Donkervoort S, Bertini E, et al. The clinical, histologic, and genotypic spectrum of SEPN1-related myopathy: A case series. Neurology 2020;95:e1512-27. https://doi.org/10.1212/WNL.0000000000010327

Caggiano S, Khirani S, Dabaj I, Cavassa E, Amaddeo A, Arroyo JO, et al. Diaphragmatic dysfunction in SEPN1-related myopathy. Neuromuscul Disord 2017;27:747-55. https://doi.org/10.1016/j.nmd.2017.04.010

Silwal A, Sarkozy A, Scoto M, Ridout D, Schmidt A, Laverty A, et al. Selenoprotein N-related myopathy: a retrospective natural history study to guide clinical trials. Ann Clin Transl Neurol 2020;7:2288-96. https://doi.org/10.1002/acn3.51218

Kazamel M, Milone M. Congenital myopathy with a novel SELN missense mutation and the challenge to differentiate it from congenital muscular dystrophy. J Clin Neurosci 2019;62:238-9. https://doi.org/10.1016/j.jocn.2018.12.024

Villar-Quiles RN, Catervi F, Cabet E, Juntas-Morales R, Genetti CA, Gidaro T, et al. ASC-1 Is a Cell Cycle Regulator Associated with Severe and Mild Forms of Myopathy. Ann Neurol 2020;87:217-32. https://doi.org/10.1002/ana.25660

Tajsharghi H, Darin N, Tulinius M, Oldfors A. Early onset myopathy with a novel mutation in the Selenoprotein N gene (SEPN1). Neuromuscul Disord 2005;15:299-302. https://doi.org/10.1016/j.nmd.2004.11.004

Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 2002;71:739-49. https://doi.org/10.1086/342719

Flanigan KM, Kerr L, Bromberg MB, Leonard C, Tsuruda J, Zhang P, et al. Congenital muscular dystrophy with rigid spine syndrome: a clinical, pathological, radiological, and genetic study. Ann Neurol 2000;47:152-61. https://doi.org/10.1002/1531-8249(200002)47:2%3C152::AID-ANA4%3E3.0.CO;2-U

Sponholz S, von der Hagen M, Hahn G, Seifert J, Richard P, Stoltenburg-Didinger G, et al. Selenoprotein N muscular dystrophy: differential diagnosis for early-onset limited mobility of the spine. J Child Neurol 2006;21:316-20. https://doi.org/10.1177/08830738060210041401

Murakami N, Sakuta R, Takahashi E, Katada Y, Nagai T, Owada M, et al. Early onset distal muscular dystrophy with normal dysferlin expression. Brain Dev 2005;27:589-91. https://doi.org/10.1016/j.braindev.2005.02.002

Nomizu S, Person DA, Saito C, Lockett LJ. A unique case of reducing body myopathy. Muscle Nerve 1992;15:463-6. https://doi.org/10.1002/mus.880150408

Schilling L, Forst R, Forst J, Fujak A. Orthopaedic Disorders in Myotonic Dystrophy Type 1: descriptive clinical study of 21 patients. BMC Musculoskelet Disord 2013;14:338. https://doi.org/10.1186/1471-2474-14-338

Goebel HH, Halbig LE, Goldfarb L, Schober R, Albani M, Neuen-Jacob E, et al. Reducing body myopathy with cytoplasmic bodies and rigid spine syndrome: a mixed congenital myopathy. Neuropediatrics 2001;32:196-205. https://doi.org/10.1055/s-2001-17374

Waldrop M, Amornvit J, Pierson CR, Boue DR, Sahenk Z. A Novel De Novo Heterozygous SCN4a Mutation Causing Congenital Myopathy, Myotonia and Multiple Congenital Anomalies. J Neuromuscul Dis 2019;6:467-73. https://doi.org/10.3233/JND-190425

Gonorazky HD, Marshall CR, Al-Murshed M, Hazrati LN, Thor MG, Hanna MG, et al. Congenital myopathy with "corona" fibres, selective muscle atrophy, and craniosynostosis associated with novel recessive mutations in SCN4A. Neuromuscul Disord 2017;27:574-80. https://doi.org/10.1016/j.nmd.2017.02.001

Elia N, Nault T, McMillan HJ, Graham GE, Huang L, Cannon SC. Corrigendum: Myotonic Myopathy with Secondary Joint and Skeletal Anomalies From the c.2386C>G, p.L796V Mutation in SCN4A. Front Neurol 2020;11:181. https://doi.org/10.3389/fneur.2020.00181

Noury JB, Böhm J, Peche GA, Guyant-Marechal L, Bedat-Millet AL, Chiche L, et al. Tubular aggregate myopathy with features of Stormorken disease due to a new STIM1 mutation. Neuromuscul Disord 2017;27:78-82. https://doi.org/10.1016/j.nmd.2016.10.006

Alawneh I, Yuki KE, Amburgey K, Yoon G, Dowling JJ, Hazrati LN, et al. Titin related myopathy with ophthalmoplegia. A novel phenotype. Neuromuscul Disord 2023;33:605-9. https://doi.org/10.1016/j.nmd.2023.05.003

Rees M, Nikoopour R, Fukuzawa A, Kho AL, Fernandez-Garcia MA, Wraige E, et al. Making sense of missense variants in TTN-related congenital myopathies. Acta Neuropathol 2021;141:431-53. https://doi.org/10.1007/s00401-020-02257-0

Calame DG, Fatih J, Herman I, Akdemir ZC, Du H, Jhangiani SN, et al. Biallelic Pathogenic Variants in TNNT3 Associated with Congenital Myopathy. Neurol Genet 2021;7:e589. https://doi.org/10.1212/NXG.0000000000000589

Zhang SS, Gu LN, Zhang T, Xu L, Wei X, Chen SH, et al. Case report: Fatal infantile hypertonic myofibrillar myopathy with compound heterozygous mutations in the CRYAB gene. Front Pediatr 2023;10:993165. https://doi.org/10.3389/fped.2022.993165

Matsumura T, Inoue K, Toyooka K, Inoue M, Iida A, Saito Y, et al. Clinical trajectory of a patient with filaminopathy who developed arrhythmogenic cardiomyopathy, myofibrillar myopathy, and multiorgan tumors. Neuromuscul Disord 2021;31:1282-6. https://doi.org/10.1016/j.nmd.2021.10.002

Finsterer J, Stöllberger C, Höftberger R. Restrictive cardiomyopathy as a cardiac manifestation of myofibrillar myopathy. Heart Lung 2011;40:e123-7. https://doi.org/10.1016/j.hrtlng.2010.07.016

Liu L, Su R, Huang P, Li X, Xiong J, Xiao Y, et al. Case Report: Evidences of myasthenia and cerebellar atrophy in a chinese patient with novel compound heterozygous MSTO1 variants. Front Genet 2022;13:947886. https://doi.org/10.3389/fgene.2022.947886

Newstead SM, Finsterer J. Leigh-Like Syndrome with a Novel, Complex Phenotype Due to m.10191T>C in Mt-ND3. Cureus 2022;14:e28986. https://doi.org/10.7759/cureus.28986

Schultz-Rogers L, Ferrer A, Dsouza NR, Zimmermann MT, Smith BE, Klee EW, et al. Novel biallelic variants in MSTO1 associated with mitochondrial myopathy. Cold Spring Harb Mol Case Stud 2019;5:a004309. https://doi.org/10.1101/mcs.a004309

Loh KW, Chan CY, Chiu CK, Bin Hasan MS, Kwan MK. Posterior spinal instrumented fusion for idiopathic scoliosis in patients with multisystemic neurodegenerative disorder: a report of two cases. J Orthop Surg 2016;24:273-7. https://doi.org/10.1177/1602400231

Rocha EBS, Rodrigues KL, Montouro LAM, Coelho ÉN, Kouyoumdjian JA, Kok F, et al. A case of mitochondrial DNA depletion syndrome type 11 - expanding the genotype and phenotype. Neuromuscul Disord 2023;33:692-6. https://doi.org/10.1016/j.nmd.2023.06.004

Li Z, Shen J, Liang J. Scoliosis in mitochondrial myopathy: case report and review of the literature. Medicine (Baltimore) 2015;94:e513. https://doi.org/10.1097/MD.0000000000000513

Hiniker A, Wong LJ, Berven S, Truong CK, Adesina AM, Margeta M. Axial mitochondrial myopathy in a patient with rapidly progressive adult-onset scoliosis. Acta Neuropathol Commun 2014;2:137. https://doi.org/10.1186/s40478-014-0137-3

Smuts I, Louw R, du Toit H, Klopper B, Mienie LJ, van der Westhuizen FH. An overview of a cohort of South African patients with mitochondrial disorders. J Inherit Metab Dis 2010;33(Suppl 3):S95-104. https://doi.org/10.1007/s10545-009-9031-8

Akinci G, Topaloglu H, Akinci B, Onay H, Karadeniz C, Ergul Y, et al. Spectrum of clinical manifestations in two young Turkish patients with congenital generalized lipodystrophy type 4. Eur J Med Genet 2016;59:320-4. https://doi.org/10.1016/j.ejmg.2016.05.001

Akinci G, Topaloglu H, Demir T, Danyeli AE, Talim B, Keskin FE, et al. Clinical spectra of neuromuscular manifestations in patients with lipodystrophy: A multicenter study. Neuromuscul Disord 2017;27:923-30. https://doi.org/10.1016/j.nmd.2017.05.015

De Blasiis P, Fullin A, Sansone M, Del Viscovo L, Napolitano F, Terracciano C, et al. Quantitative Evaluation of Upright Posture by x-Ray and 3D Stereophotogrammetry with a New Marker Set Protocol in Late Onset Pompe Disease. J Neuromuscul Dis 2021;8:979-88. https://doi.org/10.3233/JND-210663

Nogami H, Ogasawara N, Kasai T, Oki T, Murachi S. Lipid storage myopathy associated with scoliosis and multiple joint contractures. Acta Neuropathol 1983;61:305-10. https://doi.org/10.1007/BF00692002

Akiyama Y, Aimoto Y, Nishimura M, Takai S, Kawakami Y. Rigid spine syndrome with selective respiratory muscle weakness. Respiration 1992;59:48-51. https://doi.org/10.1159/000196024

Merlini L, Granata C, Ballestrazzi A, Marini ML. Rigid spine syndrome and rigid spine sign in myopathies. J Child Neurol 1989;4:274-82. https://doi.org/10.1177/088307388900400405

Todorović S. Rigid spine syndrome and progressive external ophthalmoplegia in a 15-year-old girl. Dev Med Child Neurol 1989;31:811-5. https://doi.org/10.1111/j.1469-8749. 1989.tb04079.x

Fernández-Jaén A, Suela J, Fernández-Mayoralas DM, Fernández-Perrone AL, Wotton KR, Dietrich S, et al. Microduplication 10q24.31 in a Spanish girl with scoliosis and myopathy: the critical role of LBX. Am J Med Genet A 2014;164:2074-8. https://doi.org/10.1002/ajmg.a.36589

Lamont PJ, Wallefeld W, Hilton-Jones D, Udd B, Argov Z, Barboi AC, et al. Novel mutations widen the phenotypic spectrum of slow skeletal/β-cardiac myosin (MYH7) distal myopathy. Hum Mutat 2014;35:868-79. https://doi.org/10.1002/humu.22553

Stalpers X, Verrips A, Braakhekke J, Lammens M, van den Wijngaard A, Mostert A. Scoliosis surgery in a patient with "de novo" myosin storage myopathy. Neuromuscul Disord 2011;21:812-5. https://doi.org/10.1016/j.nmd.2011.05.005

Oda T, Xiong H, Kobayashi K, Wang S, Satake W, Jiao H, et al. A de novo mutation of the MYH7 gene in a large Chinese family with autosomal dominant myopathy. Hum Genome Var 2015;2:15022. https://doi.org/10.1038/hgv.2015.22

Sekijima Y, Ikeda S, Katai S, Matsuda M, Hashimoto T, Haruta S, et al. Cytoplasmic body myopathy with hypertrophic cardiomyopathy. Intern Med 1995;34:166-70. https://doi.org/10.2169/internalmedicine.34.166

Dubowitz V, Platts M. Central core disease of muscle with focal wasting. J Neurol Neurosurg Psychiatry 1965;28:432-7. https://doi.org/10.1136/jnnp.28.5.432

Mertz KD, Jost B, Glatzel M, Min K. Progressive scoliosis in central core disease. Eur Spine J 2005;14:900-5. https://doi.org/10.1007/s00586-005-0938-y

Downloads

Publicado

2024-11-08

Edição

Seção

Artigos de Revisão

Como Citar

1.
Oliver Gomes A, Lima LFC de MS, Wajchenberg M, Souza Bulle Oliveira A, Almeida da Silva HC. Frequência de escoliose em miopatias: revisão de escopo. Rev Neurocienc [Internet]. 8º de novembro de 2024 [citado 20º de junho de 2025];32:1-29. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/16464
Recibido 2024-03-19
Aprovado 2024-10-17
Publicado 2024-11-08