Neuroinflamação Hipocampal e Distúrbios de memória na Síndrome Pós-COVID-19
DOI:
https://doi.org/10.34024/rnc.2024.v32.16138Palavras-chave:
Névoa cerebral, Neuroinflamação, Repercussões neurocognitivas, Síndrome Pós-COVID-19Resumo
Introdução. Este artigo aborda as implicações neurocognitivas da síndrome pós-COVID-19, com ênfase na neuroinflamação hipocampal e seu possível impacto nos distúrbios de memória. Explorando as evidências existentes sobre a relação entre a infecção por COVID-19 e as alterações neurocognitivas, busca-se aprofundar a compreensão desses fenômenos, destacando a importância de pesquisas mais detalhadas nesse campo crítico da saúde neurológica. Objetivo. Analisar as repercussões neurocognitivas na síndrome pós-COVID-19, com foco específico na neuroinflamação hipocampal e distúrbios de memória, visando aprofundar a compreensão dos mecanismos patológicos associados. Método. A pesquisa foi conduzida utilizando estratégias de busca em bases de dados como MEDLINE/PubMed, Science Direct e Web of Science. Os termos de busca seguiram padrões MeSH e DeCS. A questão norteadora foi sobre o impacto da síndrome pós-COVID-19 nas funções neurocognitivas, com foco na neuroinflamação hipocampal e distúrbios de memória. Resultados. A ativação microglial no hipocampo, associada ao comprometimento cognitivo por vírus, pode explicar sintomas neuropsiquiátricos em sobreviventes de COVID-19. Estudos indicam que a inflamação sistêmica, presente na sepse grave, pode desencadear comprometimento cognitivo e neurodegeneração, possivelmente compartilhando semelhanças com a COVID-19. Conclusão. Compreender as lesões cerebrais causadas pela COVID-19 pode guiar intervenções terapêuticas, incluindo moduladores de citocinas, para mitigar queixas neuropsiquiátricas. Melhorar as complicações pós-COVID-19 reduzirá o impacto da doença, enquanto a neuropatologia pode fornecer insights valiosos para outras condições neurodegenerativas.
Métricas
Referências
Zarei M, Bose D, Nouri‐Vaskeh M, Tajiknia V, Zand R, Ghasemi M. Long‐term side effects and lingering symptoms post COVID‐19 recovery. Rev Med Virol 2022;32:e2289. https://doi.org/10.1002/rmv.2289
Peghin M, Palese A, Venturini M, De Martino M, Gerussi V, Graziano E, et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. Clin Microbiol Infect 2021;27:1507-13. https://doi.org/10.1016/j.cmi.2021.05.033
Merza MA, Almufty HB, Younis HA, Rasool SO, Mohammed SA. Memory impairment among recovered COVID‐19 patients: The prevalence and risk factors, a retrospective cohort study. J Med Virol 2023;95:e28459. https://doi.org/10.1002/jmv.28459
Koralnik IJ, Tyler KL. COVID‐19: A Global Threat to the Nervous System. Ann Neurol 2020;88:1–11. https://doi.org/10.1002/ana.25807
Divani AA, Andalib S, Biller J, Di Napoli M, Moghimi N, Rubinos CA, et al. Central Nervous System Manifestations Associated with COVID-19. Curr Neurol Neurosci Rep 2020;20:60. https://doi.org/10.1007/s11910-020-01079-7
Nouraeinejad A. The pathological mechanisms underlying brain fog or cognitive impairment in long COVID. Int J Neurosci 2022;132:800-9. https://doi.org/10.1080/00207454.2022.2150845
Nouraeinejad A. Visuospatial impairment is of concern in patients with COVID-19. Int J Neurosci 2022;132:488-95. https://doi.org/10.1080/00207454.2022.2145474
Nouraeinejad A. The potential risk of falling among COVID-19 survivors with cognitive impairment. Brain Inj 2023;37:85-6. https://doi.org/10.1080/02699052.2022.2144948
Nouraeinejad A. A proposal to apply brain injury recovery treatments for cognitive impairment in COVID-19 survivors. Int J Neurosci 2022;132:1001-10. ttps://doi.org/10.1080/00207454.2022.2084091
Nouraeinejad A. Brain fog as a Long-term Sequela of COVID-19. SN Compr Clin Med 2022;5:9. https://doi.org/10.1007/s42399-022-01352-5
Nouraeinejad A. The functional and structural changes in the hippocampus of COVID-19 patients. Acta Neurol Belg 2023;123:1247-56. https://doi.org/10.1007/s13760-023-02291-1
Taquet M, Dercon Q, Luciano S, Geddes JR, Husain M, Harrison PJ. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLOS Med 2021;18:e1003773. https://doi.org/10.1371/journal.pmed.1003773
Krishnan K, Lin Y, Prewitt KRM, Potter DA. Multidisciplinary Approach to Brain Fog and Related Persisting Symptoms Post COVID-19. J Heal Serv Psychol 2022;48:31-8. https://doi.org/10.1007/s42843-022-00056-7
Vasek MJ, Garber C, Dorsey D, Durrant DM, Bollman B, Soung A, et al. A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature 2016;534:538-43. https://doi.org/10.1038/nature18283
Thakur KT, Miller EH, Glendinning MD, Al-Dalahmah O, Banu MA, Boehme AK, et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 2021;144:2696-708. https://doi.org/10.1093/brain/awab148
Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis. Lancet Neurol 2014;13:630-6. https://doi.org/10.1016/S1474-4422(14)70017-1.
Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis. JAMA 2010;304:1787. https://doi.org/10.1001/jama.2010.1553
Martynov MY, Bogolepova AN, Yasamanova AN. Endothelial dysfunction in COVID- 19 and cognitive impairment. Zhurnal Nevrol i psikhiatrii im SS Korsakova 2021;121:93. https://doi.org/10.17116/jnevro202112103193
Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res 2020;129:98-102. https://doi.org/10.1016/j.jpsychires.2020.06.014
Bliddal S, Banasik K, Pedersen OB, Nissen J, Cantwell L, Schwinn M, et al. Acute and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci Rep 2021;11:13153. https://doi.org/10.1038/s41598-021-92682-3
Almeria M, Cejudo JC, Sotoca J, Deus J, Krupinski J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav Immun Heal 2020;9:100163. https://doi.org/10.1016/j.bbih.2020.100163
Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther 2020;12:170. https://doi.org/10.1186/s13195-020-00744-w
Semmler A, Widmann CN, Okulla T, Urbach H, Kaiser M, Widman G, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry 2013;84:62-9. https://doi.org/10.1136/jnnp-2012-302883
Chen Y, Yang W, Chen F, Cui L. COVID-19 and cognitive impairment: neuroinvasive and blood‒brain barrier dysfunction. J Neuroinflammation 2022;19:222. https://doi.org/10.1186/s12974-022-02579-8
Ystad M, Hodneland E, Adolfsdottir S, Haász J, Lundervold AJ, Eichele T, et al. Cortico-striatal connectivity and cognition in normal aging: A combined DTI and resting state fMRI study. Neuroimage 2011;55:24-31. https://doi.org/10.1016/j.neuroimage.2010.11.070
Bennett IJ, Madden DJ. Disconnected aging: Cerebral white matter integrity and age-related differences in cognition. Neuroscience 2014;276:187-205. https://doi.org/10.1016/j.neuroscience.2013.11.003
Lu Y, Li X, Geng D, Mei N, Wu PY, Huang CC, et al. Cerebral Micro-Structural Changes in COVID-19 Patients – An MRI-based 3-month Follow-up Study. EClinicalMedicine 2020;25:100484. https://doi.org/10.1016/j.eclinm.2020.100484
Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med 2022;28:2406-15. https://doi.org/10.1038/s41591-022-02001-1
Dekeyzer S, De Kock I, Nikoubashman O, Vanden Bossche S, Van Eetvelde R, De Groote J, et al. “Unforgettable” – a pictorial essay on anatomy and pathology of the hippocampus. Insights Imaging 2017;8:199-212. https://doi.org/10.1007/s13244-016-0541-2
Anand K, Dhikav V. Hippocampus in health and disease: An overview. Ann Indian Acad Neurol 2012;15:239. https://doi.org/10.4103/0972-2327.105181
Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, et al. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front Cell Neurosci 2018;12:488. https://doi.org/10.3389/fncel.2018.00488
Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 2011;6:85. https://doi.org/10.1186/1750-1326-6-85
Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 2022;185:2452-68. https://doi.org/10.1016/j.cell.2022.05.028
Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011;477:90-4. https://doi.org/10.1038/nature10357
Soung AL, Vanderheiden A, Nordvig AS, Sissoko CA, Canoll P, Mariani MB, et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 2022;145:4193-201. https://doi.org/10.1093/brain/awac284
Bozzi G, Mangioni D, Minoia F, Aliberti S, Grasselli G, Barbetta L, et al. Anakinra combined with methylprednisolone in patients with severe COVID-19 pneumonia and hyperinflammation: An observational cohort study. J Allergy Clin Immunol 2021;147:561-6. https://doi.org/10.1016/j.jaci.2020.11.034
Bayat AH, Azimi H, Hassani Moghaddam M, Ebrahimi V, Fathi M, Vakili K, et al. COVID-19 causes neuronal degeneration and reduces neurogenesis in human hippocampus. Apoptosis 2022;27:852-68. https://doi.org/10.1007/s10495-022-01754-9
Klaver P, Fell J, Dietl T, Schür S, Schaller C, Elger CE, et al. Word imageability affects the hippocampus in recognition memory. Hippocampus 2005;15:704-12. https://doi.org/10.1002/hipo.20081
Cavaletti G, Gilardini A, Canta A, Rigamonti L, Rodriguez-Menendez V, Ceresa C, et al. Bortezomib-induced peripheral neurotoxicity: A neurophysiological and pathological study in the rat. Exp Neurol 2007;204:317-25. https://doi.org/10.1016/j.expneurol.2007.01.010
Huston JP, van den Brink J, Komorowski M, Huq Y, Topic B. Antidepressants reduce extinction-induced withdrawal and biting behaviors: a model for depressive-like behavior. Neuroscience 2012;210:249-57. https://doi.org/10.1016/j.neuroscience.2012.02.055
El-Shamarka MES, Sayed RH, Assaf N, Zeidan HM, Hashish AF. Combined neurotoxic effects of cannabis and nandrolone decanoate in adolescent male rats. Neurotoxicology 2020;76:114-25. https://doi.org/10.1016/j.neuro.2020.05.005
Widmann CN, Wieberneit M, Bieler L, Bernsen S, Gräfenkämper R, Brosseron F, et al. Longitudinal Neurocognitive and Pulmonological Profile of Long COVID-19: Protocol for the COVIMMUNE-Clin Study. JMIR Res Protoc 2021;10:e30259. https://doi.org/10.2196/30259
Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022;604:697-707. https://doi.org/10.1038/s41586-022-04498-0
Borsini A, Merrick B, Edgeworth J, Mandal G, Srivastava DP, Vernon AC, et al. Neurogenesis is disrupted in human hippocampal progenitor cells upon exposure to serum samples from hospitalized COVID-19 patients with neurological symptoms. Mol Psychiatry 2022;27:5049-61. https://doi.org/10.1038/s41380-022-01592-6
Dunn JT, Mroczek J, Patel HR, Ragozzino ME. Tandospirone, a Partial 5-HT1A Receptor Agonist, Administered Systemically or Into Anterior Cingulate Attenuates Repetitive Behaviors in Shank3B Mice. Int J Neuropsychopharmacol 2020;23:533-42. https://doi.org/10.1093/ijnp/pyaa019
Borsini A, Nicolaou A, Camacho-Muñoz D, Kendall AC, Di Benedetto MG, Giacobbe J, et al. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry 2021;26:6773-88. https://doi.org/10.1038/s41380-021-01171-6
Zhang BZ, Chu H, Han S, Shuai H, Deng J, Hu Y fan, et al. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 2020;30:928-31. https://doi.org/10.1038/s41422-020-00463-8
McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am J Respir Crit Care Med 2020;202:812-21. https://doi.org/10.1164/rccm.202005-1583OC
Gyawali S, Subaran R, Weissman MM, Hershkowitz D, McKenna MC, Talati A, et al. Association of a Polyadenylation Polymorphism in the Serotonin Transporter and Panic Disorder. Biol Psychiatry 2010;67:331-8. https://doi.org/10.1016/j.biopsych.2009.10.005
Abdulai-Saiku S, Vyas A. Loss of predator aversion in female rats after Toxoplasma gondii infection is not dependent on ovarian steroids. Brain Behav Immun 2017;65:95-8. https://doi.org/10.1016/j.bbi.2017.04.014
Proitsi P. Disentangling the Complex Relationship Between Hypertension and Dementia. Biol Psychiatry 2021;89:742-4. https://doi.org/10.1016/j.biopsych.2021.02.013
Al‐Sarraj S, Troakes C, Hanley B, Osborn M, Richardson MP, Hotopf M, et al. Invited Review: The spectrum of neuropathology in COVID‐19. Neuropathol Appl Neurobiol 2021;47:3-16. https://doi.org/10.1111/nan.12667
Ruggeri M, Ricci M, Pagliaro M, Gerace C. Anosmia predicts memory impairment in post-COVID-19 syndrome: results of a neuropsychological cohort study. Eur Arch Psychiatry Clin Neurosci 2023;273:195-205. https://doi.org/10.1007/s00406-023-01670-2
Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020;94:55-8. https://doi.org/10.1016/j.ijid.2020.03.062
Stoyanov GS, Stoyanov D, Ivanov M, Tonchev AB, Popov H, Petkova L. COVID-19-Associated Encephalopathy (COVEP): Basic Aspects of Neuropathology. Encyclopedia 2022;2:1773-89. https://doi.org/10.3390/encyclopedia2060112
Poloni TE, Medici V, Moretti M, Visonà SD, Cirrincione A, Carlos AF, et al. COVID‐19‐related neuropathology and microglial activation in elderly with and without dementia. Brain Pathol 2021;31:e12997. https://doi.org/10.1111/bpa.12997
Gonzalez-Fernandez E, Huang J. Cognitive Aspects of COVID-19. Curr Neurol Neurosci Rep 2023;23:531-8. https://doi.org/10.1007/s11910-023-01286-y
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Jean Carlos Souza Silva, Dayane Pessoa de Araújo, Carlos Hermano da Justa Pinheiro, Ariclécio Cunha de Oliveira

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Como Citar
Aprovado 2024-07-30
Publicado 2024-08-14
