Efeitos dos exercícios físicos sobre a neurogênese do cérebro de ratos adolescentes

Autores

  • Luan Pereira Alves Federal University São João del-Rei
  • Márcia Reimol de Andrade Federal University São João del-Rei
  • Alessandro de Oliveira Federal University São João del-Rei
  • Ismael Augusto Lima Santos Federal University São João del-Rei
  • Maria Eduarda Paiva Campos Federal University São João del-Rei
  • Luna Sara Campos Vaz Federal University São João del-Rei
  • Laila Cristina Cristina Moreira Damázio Universidade Federal de São João del-Rei

DOI:

https://doi.org/10.34024/rnc.2023.v31.14747

Palavras-chave:

Exercício, Cérebro, Neurogênese

Resumo

Introdução. A neurogênese do cérebro de ratos jovens pode ser afetada por diversos fatores em seu desenvolvimento, sendo a prática de exercícios físicos um fator importante na neurogênese do tecido nervoso. Objetivo. Investigar os efeitos de diferentes protocolos de exercícios físicos de média e alta intensidade na neurogênese do cérebro de ratos adolescentes. Método. O estudo experimental, onde foram utilizados três grupos de animais: um grupo controle (RC), um grupo que realizou exercício físico de média intensidade (R1) e um grupo que realizou exercício físico de alta intensidade (R2). Cada grupo com 8 animais, totalizando 24 animais. O programa de exercício físico progressivo resistido na escada vertical foi realizado durante 4 semanas, 5 dias por semana com uma duração variando entre 30 e 45 minutos. Após o término dos experimentos, os animais foram eutanasiados para retirada do encéfalo e posterior processamento, coloração pelo método de Nissl e análise histomorfométrica por contagem de neurônios no giro denteado do hipocampo e zona subventricular. Resultados. Os dados demonstraram que não houve diferença significante na área e altura do ápice do giro denteado do hipocampo entre os grupos (p=0,2474 e p=0,3337; respectivamente). Os resultados do comprimento do ápice do giro denteado do hipocampo demonstraram diferenças significantes (p=0,0172). Conclusão. A prática de exercícios físicos resistidos progressivos de média e alta intensidade não modificou a morfologia e densidade neuronal no giro denteado do hipocampo e zona subventricular de ratos jovens.

Métricas

Carregando Métricas ...

Downloads

Não há dados estatísticos.

Referências

Rosique-Esteban N, Díaz-López A, Martínez-González MA, Corela D, Goday D, Martínez JA, et al. Leisuretime physical activity, sedentary behaviors, sleep, and cardiometabolic risk factors at baseline in the PREDIMED-PLUS intervention trial: A cross-sectional analysis. PLoS One 2017;12:e0172253. https://doi.org/10.1371/journal.pone.0172253

Cadenas-Sánchez C, Mora-González J, Migueles JH, Mártin-Matillas M, Gómez-Vida J, Escolano-Margarit MV, et al. An exercise based randomized controlled trial on brain, cognition, physical health and mental health in overweight/obese children (ActiveBrains project): Rationale, design and methods. Contemp Clin Trials 2016;47:315-24. https://doi.org/10.1016/j.cct.2016.02.007

World Health Organization (WHO). Global Action Plan on Physical Activity 2018-2030. More Active People for a Healthier World, 2018. (acessed in: 05/16/23). Avaiable in: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3416

Kenney WL, Wilmore JH, Costill DL. Physiology of Sport and Exercise. 7th ed. Barueri:Manole; 2020.

Milistetd M, Nascimento JV, Silveira J, Fusverki D. Analysis of the competitive organization of children and youth: structural and functional adaptations. Rev Brazil Sci Sport 2014;36:671-8. https://doi.org/10.1590/2179-325520143630012

Teixeira LCM. Physical exercise, neurogenesis and memory (Thesis). São Paulo: University of Sao Paulo; 2013. https://www.teses.usp.br/teses/disponiveis/41/41135/tde-31032014-095131/publico/Livia_Clemente_SIMP.pdf

Shimamura IJ, Shimamura C, Takeda T, Abe H, Ichimura S, Sato Y, Toyama Y. Effects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young growing rats. J Bone Miner Metab 2004;22:26-31. https://doi.org/10.1007/s00774-003-0443-5. 14691683

Nebot E, Aparicio VA, Pietschmann P, Camiletti-Moirón D, Kapravelou G, Erben RG, et al. Effects of Hypertrophy Exercise in Bone Turnover Markers and Structure in Growing Male Rats. Int J Sports Med 2017; 38:418-25. https://doi.org/10.1055/s-0043-101910

Sengupta P. The Laboratory Rat: Relating Its Age With Human's. Inter J Prevent Med 2013;4:624-30. https://pubmed.ncbi.nlm.nih.gov/23930179/

Peixinho-Pena LF, Fernandes J, Almeida AA, Gomes FGN, Cassilhas R, Venancio DP, et al. A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy Behav 2012;25:323-8. https://doi.org/10.1016/j.yebeh.2012.08.011

Junqueira A, Cicogna AC, Engel LE, Aldá MA, Tomasi LC, Giuffrida R, et al. Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats. Arch Braz Cardiol 2016;106:18-25. https://doi.org/10.5935/abc.20160003

Fabel K, Kempermann G. Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromol Med 2008;10:59-66. https://doi.org/10.1007/s12017-008-8031-4

Lafenêtre P, Leske O, Ma-Hogemeie Z, Haghikia A, Bichler Z, Wahle P, et al. Exercise can rescue recognition memory impairment in a model with reduced adult hippocampal neurogenesis. Front Behav Neurosci 2010;22:34. https://doi.org/10.3389/neuro.08.034.2009

van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Nat Acad Sci 1999;96:13427-31. https://doi.org/10.1073/pnas.96.23.13427

van Praag H. Neurogenesis and exercise: past and future directions. Neuromol Med 2008;10128-40. https://doi.org/10.1007/s12017-008-8028-z

Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, et al. Exercise increases neural stem cell proliferation surrounding the area of damage following rat traumatic brain injury. J Neural Transm 2011;118:193-202. https://doi.org/10.1007/s00702-010-0495-3

van der Borght K, Kóbor-Nyakas DE, Klauke K, Eggen BJL, Nyakas C, Zee EAVD, et al. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 2009;19:928-36. https://doi.org/10.1002/hipo.20545

Blackmore DG, Golmohammadi MG, Large B, Waters MJ, Rietze RL. Exercise increases neural stem cell number in a growth hormone-dependent manner, increasing the regenerative response in aged mice. Stem Cells 2009;27:2044-52. https://doi.org/10.1002/stem.120

Berchtold NC, Chinn G, Chou M, Kesslak JP, Cotman CW, et al. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 2005;133:853-61. https://doi.org/10.1016/j.neuroscience.2005.03.026

Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trend Neurosci 2002;25:295-301. https://doi.org/10.1016/s0166-2236(02)02143-4

Lista I, Sorrentino G. Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol 2010;30:493-503. https://doi.org/10.1007/s10571-009-9488-x

Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Nat Acad Sci 2002;99:11946-50. https://doi.org/10.1073/pnas.182296499

Sharkey AM, Day K, McPherson A, Malik S, Licence D, Smith SK, et al. Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. J Clin Endocrinol Metabol 2000;85:402-9. https://doi.org/ 10.1210/jcem.85.1.6229

Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000;425:479-94. https://doi.org/10.1002/1096-9861(20001002)425:4<479::aid-cne2>3.0.co;2-3

Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Gen 2004;36:827-35. https://doi.org/10.1038/ng1395

Lou S, Liu JY, Chang H, Chen PJ, et al. Hippocampal neurogenesis and gene expression depends on exercise intensity in juvenile rats. Brain Res 2008;1210:48-55. https://doi.org/ 10.1016/j.brainres.2008.02.080

Pickering C, Gustafsson L, Cebere A, Nylander I, Liljequist S. Repeated maternal separation of male Wistar rats alters glutamate receptor expression in the hippocampus but not the prefrontal cortex. Brain Res 2006;1099:101-8. https://doi.org/10.1016/j.brainres.2006.04.136

Downloads

Publicado

2023-05-18

Como Citar

Pereira Alves, L., Reimol de Andrade, M., Oliveira, A. de ., Lima Santos, I. A. ., Paiva Campos, M. E. ., Campos Vaz, L. S. ., & Cristina Moreira Damázio, L. C. (2023). Efeitos dos exercícios físicos sobre a neurogênese do cérebro de ratos adolescentes. Revista Neurociências, 31, 1–14. https://doi.org/10.34024/rnc.2023.v31.14747

Edição

Seção

Artigos Originais
##plugins.generic.dates.received## 2023-01-17
##plugins.generic.dates.accepted## 2023-04-27
##plugins.generic.dates.published## 2023-05-18

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.