Relação entre a gonadectomia e o déficit cognitivo em Canis lupus familiaris
DOI:
https://doi.org/10.34024/rnc.2022.v30.13962Palavras-chave:
cães, castração, Cognição, Déficit cognitivo, gonadectomiaResumo
Introdução. A esterilização de cães é um dos tratamentos mais realizados na rotina cirúrgica da medicina veterinária, recebendo indicação em casos que envolvam controle populacional, distúrbios comportamentais e doenças no sistema reprodutor. Apesar de muitas vezes ser necessária, a retirada das gônadas ocasiona alterações endócrinas que reduzem significantemente os níveis hormonais. A ciência já sabe que níveis séricos baixos de testosterona reduz a proteção que a mesma exerce sobre o sistema nervoso central, e que a queda de estrogênio compromete os índices de neurotransmissores, crescimento neuronal, formação de sinapses, ação antioxidante e regulação da homeostase do cálcio. Objetivo. Identificar, através de revisão de literatura, a possível correlação entre o desenvolvimento de déficit cognitivo e a castração de cães. Método. Trata-se de uma revisão de literatura nas bases de dados Google Scholar, Pubmed, Scientific Electronic Libray Online e Portal Periódicos CAPES, com seleção de artigos, livros, dissertações e teses entre janeiro de 1990 a janeiro de 2019 por meio de palavras-chaves, tais quais gonadectomia, déficit cognitivo em cães, hormônios sexuais etc. Foram utilizados 55 trabalhos para elaboração da base científica, sendo considerado todos os idiomas e os que não fugissem ao tema central da pesquisa. Resultados. Mediante a leitura, observamos que quando se fala em cognição animal os hormônios sexuais têm papel real e fundamental para o funcionamento do cérebro canino. Conclusão. Portanto, constata-se que a metodologia atual de esterilização canina poderá trazer sequelas significativas aos cães, sendo recomendado a utilização de outros métodos contraceptivos que preservem a produção hormonal.
Downloads
Métricas
Referências
Bueno C. Relação entre homens e animais transforma dos humanos e dos bichos. Cien Cult 2020;72:9-11.
http://dx.doi.org/10.21800/2317-66602020000100004
Beaver BV. Comportamento canino: um guia para veterinários. São Paulo: Roca; 2005.
Howe LM. Surgical methods of contraception and sterilization. Theriogenology 2006;66:500-9.
http://dx.doi.org/10.1016/j.theriogenology.2006.04.005
Slatter D. Manual de cirurgia de pequenos animais. 3ª Edição. São Paulo: Editora Manole; 2007; p.2896.
Silva TC, Barreto TBM, Andrade MB, Miranda ALS, Guimarães-Bassoli ACD. Conhecimento e percepção dos médicos-veterinários do hospital veterinário da UFRPE sobre a castração pediátrica. Rev Educ Cont Med Vet Zootec 2016;13:72. https://www.revistamvez-crmvsp.com.br/index.php/recmvz/article/view/28913
Kustritz MV. Determining the optimal age for gonadectomy of dogs and cats. J Am Vet Med Assoc 2007;231:1665-75. https://doi.org/10.2460/javma.231.11.1665
Cummings BJ, Satou T, Head E, Milgram NW, Cole GM, Savage MJ, et al. Diffuse plaques contain C-terminal Aβ42 and not Aβ40: evidence from cats and dogs. Neurobiol Aging 1996;17:653-9. https://doi.org/10.1016/0194580(96)00062-0
Iqbal MJ, Dalton M, Sawers RS. Binding of testosterone and o estradiol to sex hormone binding globulin, human serum albumin and other plasma proteins: evidence for non-specific binding of o estradiol to sex hormone binding globulin. Clin Sci 1983;64:307-14. https://doi.org/10.1042/cs0640307
Neilson JC, Hart BL, Cliff KD, Ruehl WW. Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. J Am Vet Med Assoc 2001;218:1787-91.
https://doi.org/10.2460/javma.2001.218.1787
Bain MJ, Hart BL, Cliff KD, Ruehl WW. Predicting behavioral changes associated with age-related cognitive impairment in dogs. J Am Vet Med Assoc 2001;218:1792-5.
https://doi.org/10.2460/javma.2001.218.1792
Woolley CS. Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm Behav 1998;34:140-8. https://doi.org/10.1006/hbeh.1998.1466
McEwen BS, Alves SE, Bulloch K, Weiland NG. Ovarian steroids and the brain: implications for cognition and aging. Neurology 1997;48(Suppl 7):S8-15.
https://doi.org/10.1212/wnl.48.5_suppl_7.8s
Stone DJ, Rozovsky I, Morgan TE, Anderson CP, Finch CE. Increased synaptic sprouting in response to estrogen via an apolipoprotein E-dependent mechanism: implications for Alzheimer's disease. J Neurosci 1998;18:3180-5. https://doi.org/10.1523/JNEUROSCI.18-09-03180.1998
Xu H, Gouras GK, Greenfield JP, Vincent B, Naslund J, Mazzarelli L, et al. Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nat Med 1998;4:447-51. https://doi.org/10.1038/nm0498-447
Jaffe AB, Toran-Allerand CD, Greengard P, Gandy SE. Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein. J Biol Chem 1994;269:13065-8. https://doi.org/10.1016/s0021-9258(17)36796-0
Gouras GK, Xu H, Gross RS, Greenfield JP, Hai B, Wang R, et al. Testosterone reduces neuronal secretion of Alzheimer's beta -amyloid peptides. Proc Nat Acad Sci 2000;97:1202-5. https://doi.org/10.1073/pnas.97.3.1202
Hou Y, White RG, Bobik M, Marks JS, Russell MJ. Distribution of β-amyloid in the canine brain. NeuroReport 1997;8:1009-12. https://doi.org/10.1097/00001756-199703030-00038
Masur DM, Sliwinski M, Lipton RB, Blau AD, Crystal HA. Neuropsychological prediction of dementia and the absence of dementia in healthy elderly persons. Neurology 1994;44:1427. https://doi.org/10.1212/wnl.44.8.1427
Hart BL. Effect of gonadectomy on subsequent development of age-related cognitive impairment in dogs. J Am Vet Med Assoc 2001;219:51-6. https://doi.org/10.2460/javma.2001.219.51
Azkona G, García-Belenguer S, Chacón G, Rosado B, León M, Palacio J. Prevalence and risk factors of behavioural changes associated with age-related cognitive impairment in geriatric dogs. J Small Anim Pract 2009;50:87-91. https://doi.org/10.1111/j.1748-5827.2008.00718.x
Czeschlik T. Animal cognition - the phylogeny and ontogeny of cognitive abilities. Anim Cog 1998;1:1-2.
https://doi.org/10.1007/s100710050001
Shettleworth JS. Cognition, Evolution, and Behavior. 2a ed. Oxford: Oxford University Press; 2009; 700p.
Cummings BJ, Head E, Ruehl W, Milgram NW, Cotman CW. The canine as an animal model of human aging and dementia. Neurobiol Aging 1996;17:259-68. https://doi.org/10.1016/0197-4580(95)02060-8
Ruehl W, Bruyette D, DePaoli A, Cotman C, Head E, Milgram N, et al. Canine cognitive dysfunction as a model for human age-related cognitive decline, dementia and Alzheimer's disease: clinical presentation, cognitive testing, pathology and response to 1-deprenyl therapy. Progress In Brain Research; vol 106; cap 22; 1995. https://doi.org/10.1016/S0079-6123(08)61218-2
Ruehl WW, Hart BL. Canine cognitive dysfunction. In: Dodman NH, Shuster L (eds.). Psychopharmacology of Animal Behavior Disorders. Malden: Blackwell Science, 1998; p.283–304.
Ashford JW, Schmitt FA, Kumar V. Diagnosis of Alzheimer's Disease. Psychiatr Ann 1996;26:262-8. https://doi.org/10.3928/0048-5713-19960501-06
Widiger T. Diagnostic and Statistical Manual of Mental Disorders (DSM). Oxford Bibliographies Online 2011. https://doi.org/10.1093/obo/9780199828340-0022
Cummings BJ, Cotman CW. Image analysis of β-amyloid load in Alzheimer's disease and relation to dementia severity. Lancet 1995;346:1524-8. https://doi.org/10.1016/s0140-6736(95)92053-6
Uchida K, Miyauchi Y, Nakayama H, Goto N. Amyloid angiopathy with cerebral hemorrhage and senile plaque in aged dogs. Jap J Vet Sci 1990;52:605-11. https://doi.org/10.1292/jvms1939.52.605
Russell MJ, Bobik M, White RG, Hou Y, Benjamin SA, Geddes JW. Age-specific onset of β-amyloid in Beagle brains. Neurobiol Aging 1996;17:269-73. https://doi.org/10.1016/0197-4580(95)02072-1
Linn RT. The 'Preclinical Phase' of Probable Alzheimer's Disease. Arch Neurol 1995;52:485.
https://doi.org/10.1001/archneur.1995.00540290075020
Bowen J, Teri L, Kukull W, McCormick W, McCurry SM, Larson EB. Progression to dementia in patients with isolated memory loss. Lancet 1997;349:763-5. https://doi.org/10.1016/s0140-6736(96)08256-6
Jack CR, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999;52:1397. https://doi.org/10.1212/wnl.52.7.1397
Bowen J, Teri L, Kukull W, McCormick W, McCurry SM, Larson EB. Progression to dementia in patients with isolated memory loss. Lancet 1997;349:763-5. https://doi.org/10.1016/s0140-6736(96)08256-6
Yalcin E, Kasap S, Demir G. Prevalance of Behavioral Changes Associated with Age-Related Cognitive Impairment in Geriatric Dogs, Bursa, Turkey. J Anim Vet Adv 2010;9:1828-32. https://doi.org/10.3923/javaa.2010.1828.1832
Benjanirut C, Wongsangchan C, Setthawong P, Pradidtan W, Daechawattanakul S, Angkanaporn K. Prevalence and risk factors for canine cognitive dysfunction syndrome in Thailand. TJVM 2018;48:453-61. https://he01.tci-thaijo.org/index.php/tjvm/article/view/147876
Pantoja LN. Contribuição ao diagnóstico clínico da disfunção cognitiva canina (Dissertação). Seropédica: Universidade Federal Rural do Rio de Janeiro; 2010; 55p.
https://tede.ufrrj.br/jspui/handle/jspui/4123
Sohrabji F. Estrogen: A Neuroprotective or Proinflammatory Hormone? Emerging Evidence from Reproductive Aging Models. Ann New York Acad Sci 2005;1052:75-90.
https://doi.org/10.1196/annals.1347.006
Hao J, Rapp PR, Janssen WG, Lou W, Lasley BL, Hof PR, et al. Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc Nat Acad Sci 2007;104:11465-70. https://doi.org/10.1073/pnas.0704757104
Suzuki S, Brown CM, Wise PM. Mechanisms of Neuroprotection by Estrogen. Endocrine 2006;29:209-16. https://doi.org/10.1385/endo:29:2:209
Pan Y. Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs. Med Sci 2021;9:72. https://doi.org/10.3390/medsci9040072
Emerson CS, Headrick JP, Vink R. Estrogen improves biochemical and neurologic outcome following traumatic brain injury in male rats, but not in females. Brain Res 1993;608:95-100. https://doi.org/10.1016/0006-8993(93)90778-l
Cadet JL, Ladenheim B, Baum I, Carlson E, Epstein C. CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Res 1994;655:259-62. https://doi.org/10.1016/0006-8993(94)91624-1
Toung TJ, Traystman RJ, Hurn PD. Estrogen-Mediated Neuroprotection After Experimental Stroke in Male Rats. Stroke 1998;29:1666-70. https://doi.org/10.1161/01.str.29.8.1666
Azcoitia I, Sierra A, Garcia-Segura LM. Estradiol prevents kainic acid-induced neuronal loss in the rat dentate gyrus. NeuroReport 1998;9:3075-9. https://doi.org/10.1097/00001756-199809140-00029
Dubal DB, Kashon ML, Pettigrew LC, Ren JM, Finklestein SP, Rau SW, et al. Estradiol Protects against Ischemic Injury. J Cereb Blood Flow Metabol 1998;18:1253-8. https://doi.org/10.1097/00004647-199811000-00012
Wang Q, Santizo R, Baughman VL, Pelligrino DA. Estrogen Provides Neuroprotection in Transient Forebrain Ischemia Through Perfusion-Independent Mechanisms in Rats. Stroke 1999;30:630-7. https://doi.org/10.1161/01.str.30.3.630
Leal JC, Farias LR, Dias HD, Leocadio-Miguel MA, Fontenele-Araujo J. Time stamp memory is modulated by the phase of the estrous cycle in Wistar rats. Psychol Neurosci 2018;11:342-51. https://doi.org/10.1037/pne0000148
Haskell SG, Richardson ED, Horwitz RI. The effect of estrogen replacement therapy on cognitive function in women: A critical review of the literature. J Clin Epidemiol 1997;50:1249-64. https://doi.org/10.1016/s0895-4356(97)00169-8
Paganini-Hill A, Henderson VW. Estrogen Deficiency and Risk of Alzheimer's Disease in Women. Am J Epidemiol 1994;140:256-61. https://doi.org/10.1093/oxfordjournals.aje.a117244
Baldereschi M, Di Carlo A, Lepore V, Bracco L, Maggi S, Grigoletto F, et al. Estrogen-replacement therapy and Alzheimer's disease in the Italian Longitudinal Study on Aging. Neurology 1998;50:996-1002. https://doi.org/10.1212/wnl.50.4.996
Kawas C, Resnick S, Morrison A, Brookmeyer R, Corrada M, Zonderman A, et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer's disease: The Baltimore Longitudinal Study of Aging. Neurology 1997;48:1517-21. https://doi.org/10.1212/wnl.48.6.1517
Gibbs RB, Aggarwal P. Estrogen and Basal Forebrain Cholinergic Neurons: Implications for Brain Aging and Alzheimer's Disease-Related Cognitive Decline. Horm Behav 1998;34:98-111. https://doi.org/10.1006/hbeh.1998.1451
Lunine VN. Steroid Hormone Modulation of Hippocampal Dependent Spatial Memory. Stress 1997;2:21-35. https://doi.org/10.3109/10253899709014735
Simpkins JW, Rajakumar G, Zhang YQ, Simpkins CE, Greenwald D, Yu CJ, et al. Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J Neurosurg 1997;87:724-30. https://doi.org/10.3171/jns.1997.87.5.0724
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Tarcísio Alves Barreto Filho, Andressa Welison Locatel Moreira, Clara Viviane Silva da Costa

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aceito: 2022-09-15
Publicado: 2022-11-22