Doença de Parkinson: uma perspectiva neurofisiológica

Autores

  • Carina Gonçalves Pedroso Uchida
  • Rodrigo Mendes Bakerolov
  • Carla Alessandra Scorza

DOI:

https://doi.org/10.34024/rnc.2021.v29.12669

Palavras-chave:

Doença de Parkinson, neurofisiologia, núcleos da base, estimulação cerebral profunda (DBS)

Resumo

A doença de Parkinson (DP) é uma condição neurodegenerativa muito prevalente na população idosa, e o diagnóstico é essencialmente clínico, com a melhora dos sintomas motores pela reposição de levodopa. Embora a alteração do funcionamento da alça córtex-núcleos da base (NB) causada pela depleção de dopamina seja o principal mecanismo fisiopatogênico, tanto a fisiologia normal quanto as alterações que ocorrem na DP nestas estruturas ainda não foram totalmente esclarecidas. A estimulação cerebral profunda (deep brain stimulation, DBS) nos NB como modalidade de tratamento alternativa tem ampliado as possibilidades de estudo neurofisiológico da atividade neural, que em associação com os avanços tecnológicos na obtenção, processamento e integração dos sinais córtico-subcorticais, pode trazer novos entendimentos quanto à fisiopatogênese da DP, e inovações terapêuticas.

Downloads

Não há dados estatísticos.

Referências

Balestrino R, Schapira A. Parkinson disease. Eur J Neurol 2020;27:27-42. https://doi.org/10.1111/ene.14108

Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci 2017;18:435-50. https://doi.org/10.1038/nrn.2017.62

Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson’s disease: a review. JAMA 2020;323:548-60. https://doi.org/10.1001/jama.2019.22360

Kalia LV, Lang AE. Parkinson's disease. Lancet 2015;386:896-912. https://doi.org/10.1016/S0140-6736(14)61393-3

Brown P. Abnormal oscillatory in the motor system leads to impaired movement. Curr Opin Neurobiol 2007;17:656-64. https://doi.org/10.1016/j.conb.2007.12.001

Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchison WD, Lozano AM. Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J Neurophysiol 2001;86:249-60. https://doi.org/10.1152/jn.2001.86.1.249

Hutchison WD, Dostrovsky JO, Walters JR, Courtemanche R, Boraud T, Goldberg J, et al. Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci 2004;24:9240-3. https://doi.org/10.1523/JNEUROSCI.3366-04.2004

Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 2002;25:525-31. https://doi.org/10.1016/s0166-2236(02)02235-x

Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. Mov Disord 2003;18:357-63. https://doi.org/10.1002/mds.10358

Brown P, Williams D. Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol 2005;116:2510-9. https://doi.org/10.1016/j.clinph.2005.05.009

Kühn AA, Kempf F, Brücke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci 2008;28:6165-73. https://doi.org/10.1523/JNEUROSCI.0282-08.2008

Marsden JF, Limousin-Dowsey P, Ashby P, Pollak P, Brown P. Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease. Brain 2001;124:378-88. https://doi.org/10.1093/brain/124.2.378

Boon I, Geraedts VJ, Hillebrand A, Tannemaat MR, Contarino MF, Stam CJ, et al. A systematic review of MEG‐based studies in Parkinson's disease: The motor system and beyond. Hum Brain Mapp 2019;40:2827-48. https://doi.org/10.1002/hbm.24562

Engel AK, Fries P. Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol 2010;20:156-65. https://doi.org/10.1016/j.conb.2010.02.015

Mazzoni P, Hristova A, Krakauer JW. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. J Neurosci 2007;27:7105-16. https://doi.org/10.1523/JNEUROSCI.0264-07.2007

Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci 2011;34:611-8. https://doi.org/10.1016/j.tins.2011.09.003

Hirschmann J, Özkurt TE, Butz M, Homburger M, Elben S, Hartmann CJ, et al. Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease. Neuroimage 2011;55:1159-68. https://doi.org/10.1016/j.neuroimage.2010.11.063

Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, et al. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain 2011;134:359-74. https://doi.org/10.1093/brain/awq332

Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci 2007;30:357-64. https://doi.org/10.1016/j.tins.2007.05.004

Fogelson N, Kühn AA, Silberstein P, Limousin PD, Hariz M, Trottenberg T, et al. Frequency dependent effects of subthalamic nucleus stimulation in Parkinson's disease. Neurosci Letters 2005;382:5-9. https://doi.org/10.1016/j.neulet.2005.02.050

Udupa K, Chen R. Chapter 10. Motor cortical circuits in Parkinson disease and dystonia. Handbook Clin Neurol 2019;161:167-86. https://doi.org/10.1016/B978-0-444-64142-7.00047-3

Eusebio A, Thevathasan W, Doyle Gaynor L, Pogosyan A, Bye E, Foltynie T, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry 2011;82:569-73. https://doi.org/10.1136/jnnp.2010.217489

Underwood CF, Parr-Brownlie LC. Primary motor cortex in Parkinson’s disease: functional changes and opportunities for neurostimulation. Neurobiol Dis 2021;147:1-15. https://doi.org/10.1016/j.nbd.2020.105159

Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R. Firing modes of midbrain dopamine cells in the freely moving rat. Neurosci 2002;114:475-92. https://doi.org/10.1016/s0306-4522(02)00267-1

Müller EJ, Robinson PA. Suppression of Parkinsonian beta oscillations by deep brain stimulation: determination of effective protocols. Front Comput Neurosci 2018;12:1-16. https://doi.org/10.3389/fncom.2018.00098

Giannicola G, Marceglia S, Rossi L, Mrakic-Sposta S, Rampini P, Tamma F, et al. The effects of levodopa and ongoing deep brain stimulation on subtalamic beta oscillations in Parkinson’s disease. Exp Neurol 2010;226:120-7. https://doi.org/10.1016/j.expneurol.2010.08.011

Swann NC, de Hemptinne C, Aron AR, Ostrem JL, Knight RT, Starr PA. Elevated synchrony in Parkinson disease detected with electroencephalography. Ann Neurol 2015;78:742-50. https://doi.org/10.1002/ana.24507

Wiest C, Tinkhauser G, Pogosyan A, He GS, Baig F, Morgante F, et al. Subthalamic deep brain stimulation induces finely-tuned gamma oscillations in the absence of levodopa. Neurobiol Dis 2021, in press. https://doi.org/10.1016/j.nbd.2021.105287

Weintraub DB, Zaghloul KA. The role of the subthalamic nucleus in cognition. Rev Neurosci 2013;24:125-38. https://doi.org/10.1515/revneuro-2012-0075

Rosa M, Fumagalli M, Giannicola G, Marceglia S, Lucchiari C, Servello D, et al. Pathological gambling in Parkinson's disease: subthalamic oscillations during economics decisions. Mov Disord 2013;28:1644-52. https://doi.org/10.1002/mds.25427

Downloads

Publicado

2021-08-30

Como Citar

Uchida, C. G. P., Bakerolov, R. M., & Scorza, C. A. (2021). Doença de Parkinson: uma perspectiva neurofisiológica. Revista Neurociências, 29, 1–17. https://doi.org/10.34024/rnc.2021.v29.12669

Edição

Seção

Artigos de Revisão
Recebido em 2021-08-30
Publicado em 2021-08-30