Estratégias farmacológicas de drogas na Doença de Alzheimer

Autores

DOI:

https://doi.org/10.34024/rnc.2021.v29.12413

Palavras-chave:

Doença de Alzheimer, desenvolvimento de drogas, ensaios clínicos, inibidores ROCK

Resumo

Introdução. A doença de Alzheimer (DA) é uma doença neurodegenerativa de mau prognóstico e sem cura que afeta milhões de pessoas em todo o mundo. Os medicamentos atualmente em estudos clínicos tentam investigar possíveis efeitos terapêuticos que progridem ou interrompem a doença. Objetivo. Esta revisão é necessária para criar um panorama atual em 2021, descrevendo as principais vias em estudo para inibir importantes vias de progressão da doença, como vias do sistema colinérgico e inibidores de ROCK, bem como novas perspectivas de tratamento com possível combinação de drogas, para diminuir neuroinflamação e alterar o curso da doença. Método. Avaliado ClinicalTrials.gov em 19 de janeiro de 2021, identificou todos os ensaios de agentes farmacológicos em desenvolvimento para o tratamento da DA na fase 3 do estudo clínico, obtendo assim um panorama global para conter essa doença devastadora, criando melhores perspectivas sobre o tratamento da DA. Resultados. Diferentes medicamentos (n=25) foram divididos por tipos de alvos de vias neurofisiológicas (inibidor de amiloide; inibidor de tau; receptores de neurotransmissores; anti-inflamatórios não esteroides (AINEs), mitocôndrias e funções metabólicas; plasticidade sináptica). Conclusões. Os avanços nos ensaios clínicos trazem esperança e novos caminhos, pois os alvos para o tratamento da DA são encorajados e prometem novas linhas de tratamento. Novos estudos com mais combinações terapêuticas que alterem o curso da doença devem ser incentivados.

Downloads

Não há dados estatísticos.

Referências

Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011;377:1019-31.

https://doi.org/10.1016/S0140-6736(10)61349-9

de Abreu ID, Forlenza OV, de Barros HL. Demência de Alzheimer: Correlação entre memória e autonomia. Arch Clin Psychiatr 2005;32:131-6. https://doi.org/10.1590/S0101-60832005000300005

Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Gen 1999;65:664-70. https://doi.org/10.1086/302553

Bateman RJ, Aisen PS, de Strooper B, Fox NC, Lemere CA, Ringman JM, et al. Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimer’s Res Ther 2011;3:1.

http://alzres.biomedcentral.com/articles/10.1186/alzrt59

Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, et al. The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 1997;94:2025-30. https://doi.org/10.1073/pnas.94.5.2025

Shinohara M, Sato N, Shimamura M, Kurinami H, Hamasaki T, Chatterjee A, et al. Possible modification of Alzheimer’s disease by statins in midlife: Interactions with genetic and non-genetic risk factors. Front Aging Neurosci 2014;6:71. https://doi.org/10.3389/fnagi.2014.00071

Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015;1:15056. https://doi.org/10.1038/nrdp.2015.56

de Strooper B, Vassar R, Golde T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 2010;6:99-107. https://doi.org/10.1038/nrneurol.2009.218

Mucke L. Neuroscience: Alzheimer’s disease. Nature 2009;461:895-7. https://doi.org/10.1038/461895a

Lane-Donovan C, Herz J. ApoE, ApoE Receptors, and the Synapse in Alzheimer’s Disease. Trends Endocrinol Metab 2017;28:273-84. https://doi.org/10.1016/j.tem.2016.12.001

Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: Implications for the practicing clinician. Neurologist 2012;18:356-63. https://doi.org/10.1097/NRL.0b013e31826a998d

Mossello E, Ballini E. Management of patients with Alzheimer’s disease: Pharmacological treatment and quality of life. Ther Adv Chronic Dis 2012;3:183-93. https://doi.org/10.1177/2040622312452387

Armstrong RA. Risk factors for Alzheimer’s disease. Folia Neuropathol 2019;57:87-105. https://doi.org/10.5114/fn.2019.85929

Silva MVF, Loures CDMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci 2019;26:33. https://doi.org/10.1186/s12929-019-0524-y

Henderson AS. The risk factors for Alzheimer’s disease: a review and a hypothesis. Acta Psychiatr Scand 1988;78:257-75. Available from: https://doi.org/10.1111/j.1600-0447.1988.tb06336.x

Armstrong RA. What causes Alzheimer’s disease? Folia Neuropathol 2013;51:169-88. https://doi.org/10.5114/fn.2013.37702

Killin LOJ, Starr JM, Shiue IJ, Russ TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr 2016;16:175. https://doi.org/10.1186/s12877-016-0342-y

Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet 2017;390:2673–734. https://doi.org/10.1016/S0140-6736(17)31363-6

Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Inter J Neurosci 2014;124:307-21. https://doi.org/10.3109/00207454.2013.833510

Bucci DJ, Holland PC, Gallagher M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J Neurosci 1998;18:8038-46. https://doi.org/10.1523/JNEUROSCI.18-19-08038.1998

Voytko M lou, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL. Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 1994;14:167-86. https://doi.org/10.1523/JNEUROSCI.14-01-00167.1994

Blokland A, Honig W, Raaijmakers WGM. Effects of intra-hippocampal scopolamine injections in a repeated spatial acquisition task in the rat. Psychopharmacology (Berl) 1992;109:373-6. https://doi.org/10.1007/BF02245886

Boccia MM, Blake MG, Acosta GB, Baratti CM. Atropine, an anticholinergic drug, impairs memory retrieval of a high consolidated avoidance response in mice. Neurosci Letters 2003;345:97-100. https://doi.org/10.1016/S0304-3940(03)00493-2

Mega MS. The cholinergic deficit in Alzheimer’s disease : impact on cognition, behaviour and function. Int J Neuropsychopharmacol 2000;3:3-12. https://doi.org/10.1017/S1461145700001942

de Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry 2001;40:10447-57. https://doi.org/10.1021/bi0101392

Raina P, Santaguida P, Ismaila A, Patterson C, Cowan D, Levine M, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: Evidence review for a clinical practice guideline. Ann Intern Med 2008;148:379-97. https://doi.org/10.7326/0003-4819-148-5-200803040-00009

Viegas Junior C, Bolzani VS, Furlan M, Fraga CAM, Barreiro EJ. Produtos naturais como candidatos a fármacos úteis no tratamento do Mal de Alzheimer. Quím Nova 2004;27:655-60. https://doi.org/10.1590/S0100-40422004000400021

Lee JH, Jeong SK, Kim BC, Park KW, Dash A. Donepezil across the spectrum of Alzheimer’s disease: Dose optimization and clinical relevance. Acta Neurol Scand 2015;131:259-67. https://doi.org/10.1111/ane.12386

Raskind MA, Peskind ER, Wessel T, Yuan W. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology 2000;54:2261-8. https://doi.org/10.1212/wnl.54.12.2261

Rockwood K, Mintzer J, Truyen L, Wessel T, Wilkinson D. Effects of a flexible galantamine dose in Alzheimer’s disease: A randomised, controlled trial. J Neurol Neurosurg Psychiatry 2001;71:589-95. https://doi.org/10.1136/jnnp.71.5.589

Cummings J, Winblad B. A rivastigmine patch for the treatment of Alzheimer’s disease and Parkinson’s disease dementia. Expert Rev Neurother 2007;7:1457-63. https://doi.org/10.1586/14737175.7.11.1457

Milelli A, de Simone A, Ticchi N, Chen HH, Betari N, Andrisano V, et al. Tacrine-based Multifunctional Agents in Alzheimer’s Disease: An Old Story in Continuous Development§. Curr Med Chem 2017;24:3522-46.

https://doi.org/10.2174/0929867324666170309123920

Rogawski MA, Wenk GL. The Neuropharmacological Basis for the Use of Memantine in the Treatment of Alzheimer’s Disease. CNS Drug Rev 2006;9:275-308. https://doi.org/10.1111/j.1527-3458.2003.tb00254.x

Matsunaga S, Kishi T, Nomura I, Sakuma K, Okuya M, Ikuta T, et al. The efficacy and safety of memantine for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2018;17:1053-61. https://doi.org/10.1080/14740338.2018.1524870

Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil 2011;23:187-92. https://doi.org/10.1111/j.1365-2982.2010.01664.x

Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci 2016;59:1006-23. https://doi.org/10.1007/s11427-016-5083-9

Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 2019;29:787-803. https://doi.org/10.1038/s41422-019-0216-x

Schneider L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol 2020;19:111-2. https://doi.org/10.1016/S1474-4422(19)30480-6

Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther 2017;9:95. https://doi.org/10.1186/s13195-017-0318-y

Laske C. Phase 3 Trials of Solanezumab and Bapineuzumab for Alzheimer’s Disease. N Engl J Med 2014;370:1460. https://doi.org/10.1056/NEJMc1402193

Ezzati A, Davatzikos C, Wolk DA, Aisen PS, Lipton RB. Is it time to use predictive models to boost power of Alzheimer’s disease clinical trials? A post‐hoc analysis of phase 3 solanezumab trials. Alzheimers Dem 2020;16:e043022. https://doi.org/10.1002/alz.043022

Haditsch U, Roth T, Rodriguez L, Hancock S, Cecere T, Nguyen M, et al. Alzheimer’s Disease-Like Neurodegeneration in Porphyromonas gingivalis Infected Neurons with Persistent Expression of Active Gingipains. J Alzheimers Dis 2020;75:1301-17. https://doi.org/10.3233/JAD-200393

Detke M, Lynch C, Holsinger L, Kapur S, Hennings D, Raha D, et al. COR388 for the Treatment of Alzheimer’s Disease (4098). Neurology 2020;94(15 Supplement):4098.

https://n.neurology.org/content/94/15_Supplement/4098.abstract

Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement 2020;6:e12050. https://doi.org/10.1002/trc2.12050

Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol Metab 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102

Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a Randomized Placebo-controlled Crossover Study. Alzheimer Dis Assoc Disord 2017;31:107-13. https://doi.org/10.1097/WAD.0000000000000202

Liu H, Ye M, Guo H. An Updated Review of Randomized Clinical Trials Testing the Improvement of Cognitive Function of Ginkgo biloba Extract in Healthy People and Alzheimer’s Patients. Front Pharmacol 2020;10:1688. https://doi.org/10.3389/fphar.2019.01688

Oyama Y, Chikahisa L, Ueha T, Kanemaru K, Noda K. Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain Res 1996;712:349-52. https://doi.org/10.1016/0006-8993(95)01440-3

Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 2016;30:1055-77. https://doi.org/10.1007/s40263-016-0384-x

Bakker A, Albert MS, Krauss G, Speck CL, Gallagher M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage Clin 2015;7:688-98. https://doi.org/10.1016/j.nicl.2015.02.009

Richardson K, Schoen M, French B, Umscheid CA, Mitchell MD, Arnold SE, et al. Statins and cognitive function: a systematic review. Ann Intern Med 2013;159:688-97. https://doi.org/10.7326/0003-4819-159-10-201311190-00007

van Strien NM, Cappaert NLM, Witter MP. The anatomy of memory: An interactive overview of the parahippocampal- hippocampal network Nat Rev Neurosci 2009;10:272-82. https://doi.org/10.1038/nrn2614

Bellot A, Guivernau B, Tajes M, Bosch-Morató M, Valls-Comamala V, Muñoz FJ. The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Res 2014;1573:1-16. https://doi.org/10.1016/j.brainres.2014.05.024

Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 2010;33:121-9. https://doi.org/10.1016/j.tins.2010.01.001

Boros BD, Greathouse KM, Gentry EG, Curtis KA, Birchall EL, Gearing M, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol 2017;82:602-14. https://doi.org/10.1002/ana.25049

Boros BD, Greathouse KM, Gearing M, Herskowitz JH. Dendritic spine remodeling accompanies Alzheimer’s disease pathology and genetic susceptibility in cognitively normal aging. Neurobiol Aging 2019;73:92-103. https://doi.org/10.1016/j.neurobiolaging.2018.09.003

Walker CK, Greathouse KM, Boros BD, Poovey EH, Clearman KR, Ramdas R, et al. Dendritic Spine Remodeling and Synaptic Tau Levels in PS19 Tauopathy Mice. Neurosci 2021;455:195-211. https://doi.org/10.1016/j.neuroscience.2020.12.006.

Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WGM, Lou W, et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 2010;30:7507-15. https://doi.org/10.1523/JNEUROSCI.6410-09.2010

Scheff SW, Price DA, Schmitt FA, Dekosky ST, Mufson EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007;68:1501-8. https://doi.org/10.1212/01.wnl.0000260698.46517.8f

Penzes P, Cahill ME, Jones KA, Vanleeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011;14:285-93. https://doi.org/10.1038/nn.2741

Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho- kinase). J Biol Chem 1996;271:20246-9. https://doi.org/10.1074/jbc.271.34.20246

Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton 2016;73:477-97. https://doi.org/10.1002/cm.21282

Deng Y, Wei J, Cheng J, Zhong P, Xiong Z, Liu A, et al. Partial Amelioration of Synaptic and Cognitive Deficits by Inhibiting Cofilin Dephosphorylation in an Animal Model of Alzheimer’s Disease. J Alzheimers Dis 2016;53:1419-32. https://doi.org/10.3233/JAD-160167

Rush T, Martinez-Hernandez J, Dollmeyer M, Frandemiche ML, Borel E, Boisseau S, et al. Synaptotoxicity in alzheimer’s disease involved a dysregulation of actin cytoskeleton dynamics through cofilin 1 phosphorylation. J Neurosci 2018;38:10349-61. https://doi.org/10.1523/JNEUROSCI.1409-18.2018

Kang DE, Woo JA. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer’s Disease. J Alzheimers Dis 2019;72:S131-44. https://doi.org/10.3233/JAD-190585

Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 2010;13:1208-15. https://doi.org/10.1038/nn.2634

Rust MB. ADF/cofilin: A crucial regulator of synapse physiology and behavior. Cell Mol Life Sci 2015;72:3521-9. https://doi.org/10.1007/s00018-015-1941-z

Swanger SA, Mattheyses AL, Gentry EG, Herskowitz JH. ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell Logist 2015;5:e1133266. https://doi.org/10.1080/21592799.2015.1133266

Zafar S, Younas N, Sheikh N, Tahir W, Shafiq M, Schmitz M, et al. Cytoskeleton-Associated Risk Modifiers Involved in Early and Rapid Progression of Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2018;55:4009-29. https://doi.org/10.1007/s12035-017-0589-0

Huentelman MJ, Stephan DA, Talboom J, Corneveaux JJ, Reiman DM, Gerber JD, et al. Peripheral Delivery of a ROCK Inhibitor Improves Learning and Working Memory. Behav Neurosci 2009;123:218-23. https://doi.org/10.1037/a0014260

Yan J, Pan Y, Zheng X, Zhu C, Zhang Y, Shi G, et al. Comparative Study of ROCK1 and ROCK2 in Hippocampal Spine Formation and Synaptic Function. Neurosci Bull 2019;35:649-60. https://doi.org/10.1007/s12264-019-00351-2 .

Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 2001;414:212-6. https://doi.org/10.1038/35102591

Zhou Y, Su Y, Li B, Liu F, Ryder JW, Wu X, et al. Nonsteroidal Anti-Inflammatpry Drugs Can Lower Amyloidogenic Aβ 42 by Inhibiting Rho. Science 2003;302:1215-7. https://doi.org/10.1126/science.1090154

Sharma P, Roy K. ROCK-2-selective targeting and its therapeutic outcomes. Drug Discov Today 2020;25:446-55. https://doi.org/10.1016/j.drudis.2019.11.017

Herskowitz JH, Feng Y, Mattheyses AL, Hales CM, Higginbotham LA, Duong DM, et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model. J Neurosci 2013;33:19086-98. https://doi.org/10.1523/JNEUROSCI.2508-13.2013

Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Donepezil and Memantine for Moderate-to-Severe Alzheimer’s Disease. N Engl J Med 2012;366:893-903. https://doi.org/10.1056/NEJMoa1106668.

Gauthier S, Molinuevo JL. Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer’s disease. Alzheimers Dement 2013;9:326-31. https://doi.org/10.1016/j.jalz.2011.11.005

Kondo T, Imamura K, Funayama M, Tsukita K, Miyake M, Ohta A, et al. iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease. Cell Rep 2017;21:2304-12. https://doi.org/10.1016/j.celrep.2017.10.109

Downloads

Publicado

2021-07-12

Como Citar

Dantas, R. L. M., Baracho, N. C., Camins, A., & Ettcheto, M. (2021). Estratégias farmacológicas de drogas na Doença de Alzheimer. Revista Neurociências, 29. https://doi.org/10.34024/rnc.2021.v29.12413

Edição

Seção

Artigos de Revisão
Recebido em 2021-07-12
Publicado em 2021-07-12