Virtual screening for MAO-B inhibitors, a molecular target in Parkinson's disease

Authors

DOI:

https://doi.org/10.34024/rnc.2021.v29.12003

Keywords:

Enzyme Inhibitors, Neuroprotection, Drug Therapy, Biological Products

Abstract

Introduction. Parkinson's disease (PD) is a neurological pathology characterized by chronic and progressive degeneration of dopaminergic neurons in the substantia nigra pars compact (SNpc) and is the second most common neurodegenerative disorder, with age being the main risk factor. L-3,4-dihydroxyphenylanine (L-DOPA) has been widely used as the main treatment for PD. However, the majority of patients chronically treated with L-DOPA have adverse motor and psychiatric effects. Thus, several therapeutic strategies have been tested in order to replace striatal dopamine in a more physiological way, among them the use of Monoamine Oxidase B (MAO-B) inhibitors. Objective. To obtain theoretical models of new MAO-B inhibitors, with physico-chemical characteristics for the development of drugs for the treatment of PD. Method. A virtual screening was performed based on the structure of the crystallographic inhibitor Safinamide, with filter application to evaluate the passage through the blood-brain barrier, as well as docking simulations and re-docking validation. Results. The theoretical inhibitors were: (7R,8S,8'R)-7-Hydroxy-3,4,3',4'-tetramethoxy-8,8'-neolignan, Oxovirolin and 3-oxo-skimmiarepin, which exhibited affinity to the MAO-B binding site better or similar to that of the reference inhibitor. All compounds exhibited physicochemical properties favorable for oral bioavailability, according to the descriptors of Lipinski and Veber. Conclusion. The theoretical inhibitors found are potential targets for planning and designing drugs for Parkinson's Disease. However, because it is an in silico study, it is necessary that more research and tests are done to evaluate in vitro and, later, in vivo the behavior of these molecules.

Metrics

Metrics Loading ...

Author Biographies

  • Joice Silva de Oliveira, Universidade Federal do Oeste do Pará

    Farmacêutica pela Universidade Federal do Oeste do Pará (2014-2019). Residente em Farmácia Clínica e Atenção Farmacêutica pela Universidade de São Paulo (2020-2022). Membro do Grupo de Pesquisa "Neurociências e Amazônia".

  • Luciana Fernandes Pastana Ramos, Universidade Federal do Pará

    Fisioterapeuta graduada pela Universidade do Estado do Pará (2005-2009). Doutoranda e Mestre em Neurociências pela Universidade Federal do Pará. Professora de Magistério Superior da Universidade Federal do Pará lotada do Instituto de Ciências Biológicas. Foi Professora de Magistério Superior da Universidade Federal do Oeste Pará, vinculada a cursos de graduação e Residência Multiprofissional do Instituto de Saúde Coletiva. Ministra disciplinas da área de morfofisiologia humana. Atuou no âmbito administrativo como Membro da Comissão Permanente de Pessoal Docente (CPPD-UFOPA), Foi Membro do Núcleo Docente Assistencial Estruturante da Residência Multiprofissional em Estratégia e Saúde da Família para populações do Baixo Amazonas.

References

Azam F, Mohamed N, Alhussen F. Molecular interaction studies of green tea catechins as multitarget drug candidates for the treatment of Parkinson's disease: computational and structural insights. Network 2015;26:97-115. https://doi.org/10.3109/0954898X.2016.1146416

Jayaraj RL, Elangovan N, Dhanalakshmi C, Manivasagam T, Essa MM. CNB-001, a novel pyrazole derivative mitigates motor impairments associated with neurodegeneration via suppression of neuroinflammatory and apoptotic response in experimental Parkinson's disease mice. Chem Biol Interact 2014;220:149-57. https://doi.org/10.1016/j.cbi.2014.06.022

Oertel W, Schulz JB. Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J Neurochem 2016;139(Suppl 1):325-37. https://doi.org/10.1111/jnc.13750

Lee A, Gilbert RM. Epidemiology of Parkinson Disease. Neurol Clin 2016;34:955-65. https://doi.org/10.1016/j.ncl.2016.06.012

PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson's disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 2014;384:1196-205. https://doi.org/10.1016/S0140-6736(14)60683-8

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers 2017;3:17013. https://doi.org/10.1038/nrdp.2017.13

Przedborski S. The two-century journey of Parkinson disease research. Nat Rev Neurosci 2017;18:251-9. https://doi.org/10.1038/nrn.2017.25

Lenke TL, Williams DA. Foye’s principles of medicinal chemistry. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2008, 1479p. http://www.gbv.de/dms/bs/toc/667800042.pdf

Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2014;18:219-43. https://doi.org/10.1007/s11030-013-9490-6

Nel MS, Petzer A, Petzer JP, Legoabe LJ. 2-Heteroarylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorg Chem 2016;69:20-8. https://doi.org/10.1016/j.bioorg.2016.09.004

Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006;7:295-309. https://doi.org/10.1038/nrn1883

Robinson SJ, Petzer JP, Petzer A, Bergh JJ, Lourens AC. Selected furanochalcones as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 2013;23:4985-9. https://doi.org/10.1016/j.bmcl.2013.06.050

Minders C, Petzer JP, Petzer A, Lourens AC. Monoamine oxidase inhibitory activities of heterocyclic chalcones. Bioorg Med Chem Lett 2015;25:5270-6. https://doi.org/10.1016/j.bmcl.2015.09.049

Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, et al. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 2007;50:5848-52. https://doi.org/10.1021/jm070677y

Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 2015;55:460-73. https://doi.org/10.1021/ci500588j

Souza SD. Estudo de inibidores de colinesterases aplicando técnicas de QSAR-2D (HQSAR) e docking molecular (Tese). Rio de Janeiro: Universidade Federal do Rio de Janeiro, 2012. 115 p. http://objdig.ufrj.br/59/teses/793349.pdf

Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, Mattevi A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Mol Biol 2002;9:22–6. https://doi.org/10.1038/nsb732

PubChem. Compound summary: (1R,2S,3R)-1,4-Bis(3,4-dimethoxyphenyl)-2,3-dimethylbutane-1-ol. https://pubchem.ncbi.nlm.nih.gov/compound/15386364

PubChem. Compound summary: alpha-[2-Methoxy-4-[(E)-1-propenyl]phenoxy]-3',4'-dimethoxypropiophenone. https://pubchem.ncbi.nlm.nih.gov/compound/6279288

PubChem. Compound summary: 3-Oxoskimmiarepin. https://pubchem.ncbi.nlm.nih.gov/compound/101671907

Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 1994;235:625-34. https://doi.org/10.1006/jmbi.1994.1017

Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44:235-49. https://doi.org/10.1016/s1056-8719(00)00107-6

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615-23. https://doi.org/10.1021/jm020017n

De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 2005;102:12684-9. https://doi.org/10.1073/pnas.0505975102

Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci USA 2003;100:9750-5. https://doi.org/10.1073/pnas.1633804100

Andrade IGS. Benefícios e Riscos das Plantas Medicinais na Doença de Parkinson (Dissertação). Coimbra: Faculdade de Farmácia, Universidade de Coimbra, 2018. 62p. https://estudogeral.uc.pt/bitstream/10316/84376/1/DOCUMENTO%20UNICOpdf.pdf

Rai SN, Birla H, Zahra W, Singh SS, Singh SP. Immunomodulation of Parkinson's disease using Mucuna pruriens (Mp). J Chem Neuroanat 2017;85:27-35. https://doi.org/10.1016/j.jchemneu.2017.06.005

Santos DA. Avaliação das possíveis propriedades neuroprotetoras do extrato metanólico de Bauhinia microstachya Raddi e da mistura ae ß-amirina sobre o sistema nervoso central de roedores com a doença de Alzheimer e a doença de Parkinson induzidas quimiicamente (Dissertação). Itajaí: Universidade do Vale do Itajaí, 2013. 117p. http://siaibib01.univali.br/pdf/Diogo%20Adolfo%20dos%20Santos.pdf

Melo HB. Atividade neuroprotetora do extrato etanólico de Aristolochia cymbifera sobre o sistema nervoso central e periférico de vertebrados (Trabalho de Conclusão de Curso). São Gabriel: Universidade Federal do Pampa, 2016, 42p. http://dspace.unipampa.edu.br/bitstream/riu/1332/1/Atividade%20neuroprotetora%20do%20extrato%20etan%c3%b3lico%20de%20aristolochia%20cymbifera%20sobre%20o%20sistema%20nervoso%20central%20e%20perif%c3%a9rico%20de%20vertebrados.pdf

Published

2021-12-10

Issue

Section

Artigos Originais

How to Cite

1.
Silva de Oliveira J, Fernandes Pastana Ramos L. Virtual screening for MAO-B inhibitors, a molecular target in Parkinson’s disease. Rev Neurocienc [Internet]. 2021 Dec. 10 [cited 2025 Dec. 19];29:1-26. Available from: https://periodicos.unifesp.br/index.php/neurociencias/article/view/12003
Received 2021-04-13
Accepted 2021-10-26
Published 2021-12-10