Virtual screening for MAO-B inhibitors, a molecular target in Parkinson's disease
DOI:
https://doi.org/10.34024/rnc.2021.v29.12003Keywords:
Enzyme Inhibitors, Neuroprotection, Drug Therapy, Biological ProductsAbstract
Introduction. Parkinson's disease (PD) is a neurological pathology characterized by chronic and progressive degeneration of dopaminergic neurons in the substantia nigra pars compact (SNpc) and is the second most common neurodegenerative disorder, with age being the main risk factor. L-3,4-dihydroxyphenylanine (L-DOPA) has been widely used as the main treatment for PD. However, the majority of patients chronically treated with L-DOPA have adverse motor and psychiatric effects. Thus, several therapeutic strategies have been tested in order to replace striatal dopamine in a more physiological way, among them the use of Monoamine Oxidase B (MAO-B) inhibitors. Objective. To obtain theoretical models of new MAO-B inhibitors, with physico-chemical characteristics for the development of drugs for the treatment of PD. Method. A virtual screening was performed based on the structure of the crystallographic inhibitor Safinamide, with filter application to evaluate the passage through the blood-brain barrier, as well as docking simulations and re-docking validation. Results. The theoretical inhibitors were: (7R,8S,8'R)-7-Hydroxy-3,4,3',4'-tetramethoxy-8,8'-neolignan, Oxovirolin and 3-oxo-skimmiarepin, which exhibited affinity to the MAO-B binding site better or similar to that of the reference inhibitor. All compounds exhibited physicochemical properties favorable for oral bioavailability, according to the descriptors of Lipinski and Veber. Conclusion. The theoretical inhibitors found are potential targets for planning and designing drugs for Parkinson's Disease. However, because it is an in silico study, it is necessary that more research and tests are done to evaluate in vitro and, later, in vivo the behavior of these molecules.
Metrics
References
Azam F, Mohamed N, Alhussen F. Molecular interaction studies of green tea catechins as multitarget drug candidates for the treatment of Parkinson's disease: computational and structural insights. Network 2015;26:97-115. https://doi.org/10.3109/0954898X.2016.1146416
Jayaraj RL, Elangovan N, Dhanalakshmi C, Manivasagam T, Essa MM. CNB-001, a novel pyrazole derivative mitigates motor impairments associated with neurodegeneration via suppression of neuroinflammatory and apoptotic response in experimental Parkinson's disease mice. Chem Biol Interact 2014;220:149-57. https://doi.org/10.1016/j.cbi.2014.06.022
Oertel W, Schulz JB. Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J Neurochem 2016;139(Suppl 1):325-37. https://doi.org/10.1111/jnc.13750
Lee A, Gilbert RM. Epidemiology of Parkinson Disease. Neurol Clin 2016;34:955-65. https://doi.org/10.1016/j.ncl.2016.06.012
PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson's disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 2014;384:1196-205. https://doi.org/10.1016/S0140-6736(14)60683-8
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers 2017;3:17013. https://doi.org/10.1038/nrdp.2017.13
Przedborski S. The two-century journey of Parkinson disease research. Nat Rev Neurosci 2017;18:251-9. https://doi.org/10.1038/nrn.2017.25
Lenke TL, Williams DA. Foye’s principles of medicinal chemistry. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2008, 1479p. http://www.gbv.de/dms/bs/toc/667800042.pdf
Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2014;18:219-43. https://doi.org/10.1007/s11030-013-9490-6
Nel MS, Petzer A, Petzer JP, Legoabe LJ. 2-Heteroarylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorg Chem 2016;69:20-8. https://doi.org/10.1016/j.bioorg.2016.09.004
Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006;7:295-309. https://doi.org/10.1038/nrn1883
Robinson SJ, Petzer JP, Petzer A, Bergh JJ, Lourens AC. Selected furanochalcones as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 2013;23:4985-9. https://doi.org/10.1016/j.bmcl.2013.06.050
Minders C, Petzer JP, Petzer A, Lourens AC. Monoamine oxidase inhibitory activities of heterocyclic chalcones. Bioorg Med Chem Lett 2015;25:5270-6. https://doi.org/10.1016/j.bmcl.2015.09.049
Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, et al. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 2007;50:5848-52. https://doi.org/10.1021/jm070677y
Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 2015;55:460-73. https://doi.org/10.1021/ci500588j
Souza SD. Estudo de inibidores de colinesterases aplicando técnicas de QSAR-2D (HQSAR) e docking molecular (Tese). Rio de Janeiro: Universidade Federal do Rio de Janeiro, 2012. 115 p. http://objdig.ufrj.br/59/teses/793349.pdf
Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, Mattevi A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Mol Biol 2002;9:22–6. https://doi.org/10.1038/nsb732
PubChem. Compound summary: (1R,2S,3R)-1,4-Bis(3,4-dimethoxyphenyl)-2,3-dimethylbutane-1-ol. https://pubchem.ncbi.nlm.nih.gov/compound/15386364
PubChem. Compound summary: alpha-[2-Methoxy-4-[(E)-1-propenyl]phenoxy]-3',4'-dimethoxypropiophenone. https://pubchem.ncbi.nlm.nih.gov/compound/6279288
PubChem. Compound summary: 3-Oxoskimmiarepin. https://pubchem.ncbi.nlm.nih.gov/compound/101671907
Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 1994;235:625-34. https://doi.org/10.1006/jmbi.1994.1017
Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44:235-49. https://doi.org/10.1016/s1056-8719(00)00107-6
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615-23. https://doi.org/10.1021/jm020017n
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 2005;102:12684-9. https://doi.org/10.1073/pnas.0505975102
Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci USA 2003;100:9750-5. https://doi.org/10.1073/pnas.1633804100
Andrade IGS. Benefícios e Riscos das Plantas Medicinais na Doença de Parkinson (Dissertação). Coimbra: Faculdade de Farmácia, Universidade de Coimbra, 2018. 62p. https://estudogeral.uc.pt/bitstream/10316/84376/1/DOCUMENTO%20UNICOpdf.pdf
Rai SN, Birla H, Zahra W, Singh SS, Singh SP. Immunomodulation of Parkinson's disease using Mucuna pruriens (Mp). J Chem Neuroanat 2017;85:27-35. https://doi.org/10.1016/j.jchemneu.2017.06.005
Santos DA. Avaliação das possíveis propriedades neuroprotetoras do extrato metanólico de Bauhinia microstachya Raddi e da mistura ae ß-amirina sobre o sistema nervoso central de roedores com a doença de Alzheimer e a doença de Parkinson induzidas quimiicamente (Dissertação). Itajaí: Universidade do Vale do Itajaí, 2013. 117p. http://siaibib01.univali.br/pdf/Diogo%20Adolfo%20dos%20Santos.pdf
Melo HB. Atividade neuroprotetora do extrato etanólico de Aristolochia cymbifera sobre o sistema nervoso central e periférico de vertebrados (Trabalho de Conclusão de Curso). São Gabriel: Universidade Federal do Pampa, 2016, 42p. http://dspace.unipampa.edu.br/bitstream/riu/1332/1/Atividade%20neuroprotetora%20do%20extrato%20etan%c3%b3lico%20de%20aristolochia%20cymbifera%20sobre%20o%20sistema%20nervoso%20central%20e%20perif%c3%a9rico%20de%20vertebrados.pdf
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Joice Silva de Oliveira, Luciana Fernandes Pastana Ramos

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Accepted 2021-10-26
Published 2021-12-10
