Avaliação de células DCX positivas no cérebro do primata Sapajus apella

Autores

DOI:

https://doi.org/10.34024/rnc.2022.v30.11880

Palavras-chave:

Double-cortina, Primatas, Neurogênese, Sapajus apella

Resumo

Introdução. A neurogênese no neocórtex de primatas é um campo de estudo a ser desvendado. Autores sugerem que novos neurônios provenientes da zona subventricular (SVZ) são adicionados em áreas corticais com funções cognitivas e associativas, mas não em áreas sensoriais primárias. Objetivos. Investigar a neurogênese em amostras de cérebro de primatas não-humanos da espécie Sapajus apella imunomarcadas com o anticorpo anti-DCX. Analisar qualitativa e quantitativamente a imunomarcação encontrada em diferentes regiões do encéfalo deste primata. Descrever as áreas com o maior número de células DCX positivas e relacionar esses achados com suas respectivas funções. Método. O estudo utilizou lâminas contendo secções coronais de cérebros de S. apella imunomarcadas com anticorpo anti-DCX. As lâminas foram analisadas utilizando microscópio óptico binocular. Locais onde a imunomarcação para anti-DCX foi positiva foram fotografadas e as células foram contadas. Resultados. Analisou-se 22 lâminas em microscopia ótica, das quais somente 5 possuíam células DCX positivas. Verificou-se 153 células DCX positivas. Foram identificados neuroblastos com morfologias distintas em diferentes regiões do encéfalo desse primata. A região subventricular foi a região onde foram encontradas a maior quantidade de neuroblastos. Foram encontrados neuroblastos também na região cortical, subcortical, no Estriado e no terceiro ventrículo. Conclusão. Células DCX positivas foram encontradas na região periventricular do ventrículo lateral e do terceiro ventrículo, como também na região cortical, subcortical e no estriado. A presença de tais células reforça a existência já descrita de uma corrente migratória rostral, como também da capacidade de interconexão entre áreas corticais presentes em primatas.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Ramon y Cajal S. Degeneration and regeneration of the nervous system. London: Oxford University Press. Facsimile of the 1928 edition, 1928; 236-45.

Altman J. Are New Neurons Formed in the Brains of Adult Mammals? Science 1962; 135: 1127–8. https://doi.org/10.1126/science.135.3509.1127

Altman J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 1963; 145: 573-91. https://doi.org/10.1002/ar.1091450409

Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969; 137: 433-57. https://doi.org/10.1002/cne.901370404

Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255: 1707-10. https://doi.org/10.1126/science.1553558

Lima SMA, Gomes-Leal W. Neurogenesis in the hippocampus of adult humans: controversy "fixed" at last. Neural Regen Res 2019; 14: 1917-8. https://doi.org/10.4103/1673-5374.259616

Kaneko N, Sawamoto K. Adult neurogenesis and its alteration under pathological conditions. Neurosci Res 2009; 63: 155-64. https://doi.org/10.1016/j.neures.2008.12.001

Pierce AA, Xu AW. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 2010; 30: 723-30. https://doi.org/10.1523/jneurosci.2479-09.2010

Cardoso GTM, Gomes-Leal W, Franco ECS, Pereira Jr A, Gomes FL, Brino ALF, Lima SMA. Compensatory hippocampal neurogenesis in the absence of cognitive impairment following experimental hippocampectomy in adult rats. Front Cell Neurosci 2021; 15: 709291. https://doi.org/10.3389/fncel.2021.709291

Rakic P, Bourgeois JP, Goldman R, Patricia S. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog Brain Res 1994; 102: 227-43. https://doi.org/10.1016/s0079-6123(08)60543-9

La Rosa C, Ghibaudi M, Bonfanti L. Newly Generated and Non-Newly Generated “Immature” Neurons in the Mammalian Brain: A Possible Reservoir of Young Cells to Prevent Brain Aging and Disease? J Clin Med 2019; 8: 685. https://doi.org/10.3390/jcm8050685

Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science 1999; 286: 548-52. https://doi.org/10.1126/science.286.5439.548

Liu RX, Ma J, Wang B, Tian T, Guo N, Liu SJ. No DCX-positive neurogenesis in the cerebral cortex of the adult primate. Neural Regen Res 2020; 15: 1290-9. https://doi.org/10.4103/1673-5374.272610

Doetsch F, Garcıa-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997; 17: 5046-61. https://doi.org/10.1523/jneurosci.17-13-05046.1997

Ribeiro FF, Xapelli S. An Overview of Adult Neurogenesis. Adv Exp Med Biol 2021; 1331: 77-94. https://doi.org/10.1007/978-3-030-74046-7_7

Gleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 1999; 23: 257-71. https://doi.org/10.1016/s0896-6273(00)80778-3

Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 2003; 467: 1-10. https://doi.org/10.1002/cne.10874

Filipovic R, Santhosh Kumar S, Fiondella C, Loturco J. Increasing doublecortin expression promotes migration of human embryonic stem cell-derived neurons. Stem Cells 2012; 30: 1852-62. https://doi.org/10.1002/stem.1162

Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet M-C, et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 1999; 23: 247-56. https://doi.org/10.1016/s0896-6273(00)80777-1

Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 2018; 23: 25-30. https://doi.org/10.1016/j.stem.2018.04.004

Lucassen PJ, Toni N, Kempermann G, Frisen J, Gage FH, Swaab DF. Limits to human neurogenesis—really? Mol Psychiatr 2020; 25: 2207-9. https://doi.org/10.1038/s41380-018-0337-5

Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 2004; 19: 234-46. https://doi.org/10.1111/j.0953-816X.2003.03123.x

Ansorg A, Bornkessel K, Witte OW, Urbach A. Immunohistochemistry and multiple labeling with antibodies from the same host species to study adult hippocampal neurogenesis. JoVE 2015; 98: e52551. https://doi.org/10.3791/52551

Kuipers SD, Schroeder JE, Trentani A. Changes in hippocampal neurogenesis throughout early development. Neurobiol Aging 2015; 36: 365-79. https://doi.org/10.1016/j.neurobiolaging.2014.07.033

Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 2005; 21: 1-14. https://doi.org/10.1111/j.1460-9568.2004.03813.x

LoTurco J. Doublecortin and a tale of two serines. Neuron 2004; 41: 175-7. https://doi.org/10.1016/s0896-6273(04)00006-6

Levy F, Keller M, Brus M. Temporal features of adult neurogenesis: differences and similarities across mammalian species. Front Neurosci 2013; 7: 135. https://doi.org/10.3389/fnins.2013.00135

Bradbury J. Molecular insights into human brain evolution. PLoS Biol 2005; 3: e50. https://doi.org/10.1002/cne.22547

Gomes-Leal W. Adult Hippocampal Neurogenesis and Affective Disorders: New Neurons for Psychic Well-Being. Front Neurosci 2021; 15: 594448. https://doi.org/10.3389/fnins.2021.594448

Bloch J, Kaeser M, Sadeghi Y, Rouiller EM, Redmond Jr DE, Brunet J-F. Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol 2011; 519: 775-89. https://doi.org/10.1002/cne.22547

Wang C, Liu F, Liu Y-Y, Zhao C-H, You Y, Wang L, et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 2011; 21: 1534-50. https://doi.org/10.1038/cr.2011.83

Snyder JS, Drew MR. Functional neurogenesis over the years. Behav Brain Res 2020; 382: 112470. https://doi.org/10.1016/j.bbr.2020.112470

Ernst A, Frisén J. Adult Neurogenesis in Humans - Common and Unique Traits in Mammals. PLoS Biol 2015; 13: e1002045. https://doi.org/10.1371/journal.pbio.1002045

Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, et al. Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. J Neurosci 2021; 41: 2554-65. https://doi.org/10.1523/JNEUROSCI.0676-20.2020

Downloads

Publicado

2022-05-20

Como Citar

Franco, E. C. S., & Vitor da Silva Freitas, A. (2022). Avaliação de células DCX positivas no cérebro do primata Sapajus apella. Revista Neurociências, 30. https://doi.org/10.34024/rnc.2022.v30.11880

Edição

Seção

Artigos Originais
Recebido: 2021-03-13
Aceito: 2022-03-22
Publicado: 2022-05-20