Sistemas de Neurotransmissão Envolvidos no Modelo de Epilepsia

Uma Revisão de Literatura

Autores

  • Rivelilson Mendes de Freitas Farmacêutico, Doutor em Farmacologia, Professor Adjunto do Departamento de Bioquímica e Farmacologia da Universidade Federal do Piauí – UFPI, Teresina-PI, Brasil.

DOI:

https://doi.org/10.34024/rnc.2011.v19.8405

Palavras-chave:

Pilocarpina, Convulsões, Neurotransmissores, Psicofármacos, Monoaminas, Aminoácidos

Resumo

Introdução. Os modelos de epilepsia do lobo temporal semelhante a de humanos podem ser utilizados para estudar as mudanças neuroquímicas relatadas durante o desenvolvimento, e na propagação e/ou manutenção das convulsões, e também pode ser útil para caracterizar prontamente os mecanismos fisiopatológicos da epilepsia. Objetivo. O objetivo deste trabalho foi levantar dados na literatura sobre os sistemas de neurotransmissão envolvidos nas convulsões induzidas por pilocarpina. Método. Foi realizada uma revisão literária através do MEDLINE e PUBMED utilizando-se as seguintes palavras-chave: pilocarpine, neurotransmitter systems, psychotropic drugs, monoamines e amino acids. Resultados. Foram selecionados artigos publicados entre 1973 e 2009, que relacionavam pilocarpina e sistemas de neurotransmissão com convulsões em modelos experimentais. Conclusão. A literatura registra a participação de diferentes sistemas de neurotransmissão nas convulsões induzidas pela pilocarpina, no entanto, ainda é necessário a investigação das alterações nestes para o pronto esclarecimento da fisiopatologia das convulsões límbicas.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Ben-Ari Y, Tremblay E, Ottersen OP. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 1980;5:515-28.

Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 1991;32:778-82.

Marinho MMF, Sousa FCF, Bruin VMS, Aguiar LMV, Pinho RSN, Viana GSB. Inhibitory action of a calcium channel blocker (nimodipine) on seizures and brain damage induced by pilocarpine and lithium-pilocarpine in rats. Neurosci Lett 1997;235:13-6.

Honchar MP, Olney JW, Sherman WR. Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 1983;220:323-5.

Clifford DB, Olney JW, Maniotis A, Collins RC, Zorumski CF. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 1987;23:953-68.

Marinho MMF, Sousa FCF, Bruin VMS, Vale MR, Viana GSB. Effects of lithium, alone or associated with pilocarpine, on muscarinic and dopaminergic receptors and on phosphoinositide metabolism in rat hippocampus and striatum. Neurochem Int 1998;33:299-306.

Naffah-Mazzacoratti MG, Cavalheiro EA, Ferreira EC, Abdalla DSP, Amado D, Bellissimo MI. Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res 2001;46:121-8.

Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG. Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 1994;35:1-11.

Barone P, Parashos SA, Palma V, Marin C, Campanella G, Chase TN. Dopamine D1 receptor modulation of pilocarpine-induced convulsions. Neuroscience 1990;34:209-17.

Cavalheiro EA, Priel MR, Santos NF. Developmental aspects of the pilocarpine model of epilepsy. Epilepsy Res 1996;26:115-21.

Loup F, Fritschy JM, Kiener T, Bouilleret V. GABAergic neurons and GABAA-receptors in temporal lobe epilepsy. Neurochem Int 1999;34:435-45.

Massieu L, Rivera A, Tapia R. Convulsions and inhibition of glutamate decarboxylase by pyridoxal phosphate-g-glutamyl hydrazone in the developing rat. Neurochem Res 1994;19:183-7.

Michotte Y, Khan GM, Smolders I, Ebinger G. Anticonvulsant effect and neurottransmitter modulation of focal and systemic 2-chloroadenosine against the development of pilocarpine-induced seizures. Neuropharmacol 2000;39:2418-32.

Zouhar A, Mares P, Liskova-Bernasdova K, Mudrochova M. Motor and electrocorticographic epileptic activity induced by bicuculline in developing rats. Epilepsia 1989;30:501-10.

Starr MS, Starr BS. Paradoxal facilitation of pilocarpine-induced seizures in the mouse by MK-801 and the nitric oxide synthesis inhibitor L-NAME. Pharm Biochem Behav 1993;45:321-5.

Cavalheiro EA, Guedes RCA. Blockade of spreading depression in chronic epileptic rats: reversion by diazepam. Epilepsy Res 1997;27:33-40.

Fujikawa DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res 1996;725:11-22.

De Lorenzo RJ, Churn SB, Kochan LD. Chronic inhibition of Ca2+/ Calmodulin Kinase II activity in the pilocarpine model of epilepsy. Brain Res 2000;875:66-77.

Freitas RM, Sousa FCF, Vasconcelos SMM, Viana GSB, Fonteles MMF. Pilocarpine-induced seizures in adult rats: lipid peroxidation level, nitrite formation, GABAergic and glutamatergic receptor alterations in the hippocampus, striatum and frontal cortex. Pharm Biochem Behav 2004;78:327-32.

Turski WA, Cavalheiro EA, Schwartz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: a behavioural, electroencephalographic and neuropathological study. Behav Brain Res 1983; 9:315-35.

Morrisett RA, Jope RS, Snead OC. Effects of drugs on the initiation and maintenance of status epilepticus induced by administration of pilocarpine to lithium-pretread rats. Experimental Neurology 1987;97:193-200.

Dorandeu F, Carpentier P, Baubichon D, Four E, Bernabé D, Burckhart MF, et al. Efficacy oh the ketamine-atropine combination in the delayed treatment of soman-induced status epilepticus. Brain Res 2005;1051:164-75.

Jope RS, Williams MB. Modulation by inositol of cholinergic-and serotonergic-induced seizures in lithium-treated rats. Brain Res 1995;685:169-78.

Ormandy GC, Song L, Jope RS. Analysis of the convulsant-potentiating effects of lithium in rats. Exper Neurol 1991;111:356-61.

Savolainen KM, Hirvonen MR. Second messengers in cholinergicinduced convulsions and neuronal injury. Toxicol Lett 1992;64:437-45.

Oliveira AA, Nogueria CRA, Nascimento VS, Aguiar LMV, Freitas RM, Sousa FCF, et al. Evaluation of levetiracetam effects on pilocarpineinduced seizures: cholinergic muscarinic system involvement. Neurosci Lett 2005;385:184-8.

Guindine PA, Rezende GH, Queiroz CM, Mello LE, Prado VF, Prado MA, et al. Vesicular acetylcholine transporter knock-down mice are more susceptible to pilocarpine induced status epilepticus. Neurosci Lett 2008;436:201-4.

El-Etri MM, Ennis M, Jiang M, Shipley MT. Pilocarpine-induced convulsions in rats: evidence for muscarinic receptor-mediated activation of locus coeruleus and norepinephrine release in cholinolytic seizure development. Exper Neurol 1993;121:24-39.

Pizzanelli C, Lazzeri G, Fulceri F, Giorgi FS, Pasquali L, Cifelli G, et al. Lack of alpha 1b-adrenergic receptor protects against epileptic seizures. Epilepsia 2009;50:59-64.

Barone P, Palma V, Debartolomeis A, Tedeschi E, Muscettola G, Campanella G. Dopamine D1 and D2 receptors mediate opposite functions in seizures induced by lithium-pilocarpine. Eur J Pharmacol 1991;195:157-62.

Al-Tajir G, Starr MS, Starr BS. Proconvulsant effect of SKF 38393 mediated by nigral D1 receptors. Eur. J. Pharmacol. 1990;162:245-251.

Al-Tajir G, Chandler CJ, Starr BS, Starr MS. Opposite effect of stimulation of D1 and D2 dopamine receptors on the expression of motor seizures in mouse and rat. Neuropharmacology 1990;29:657-61.

Al-Tajir G, Starr MS, Chandler CJ, StarrBS. Opposing effects of dopamine D1 e D2 receptor simulation on the propagation of motor seizures in mice and rats. British J Pharmacol 1990;99:261-5.

Stephen TM, Corcoran ME. Catecholamines and convulsions. Brain Res 1979;170:497-507.

King GA, Burnham WM. Effects of d-amphetamine and apomorphine in a new animal model of petit mal epilepsy. Psychopharmacology 1980;69:281-5.

Hiramatsu M, Fujimoto N, Mori A. Catecholamine level in cerebrospinal fluid of epileptics. Neurochem Res 1982;7:1299-305.

Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 1989;3:154-71.

Segarra AC, Mejías-Aponte CA, Jiménes-Rivera CA. Sex differences in models of temporal lobe epilepsy: role of testosterone. Brain Res 2002;944:210-8.

Waddington JL, O’boyle KM. Drugs acting on brain dopamine receptors: a conceptual re-evaluation five years after the first selective D1 antagonist. Clin Pharmacol Ther 1989;43:1-52.

Trindade-Filho EM, Castro-Neto EF, Carvalho AR, Lima E, Scorza FA, Amado D, et al. Serotonin depletion effects on the pilocarpine model of epilepsy. Epilepsy Res 2008;82:194-9.

Peroutka SJ. 5-Hydroxytryptamine receptor subtypes. Annu Rev Neurosci 1988;7:45-8.

Gasior M, Ungard JT, Witkin JM. Chlormethiazole: effectiveness against toxic effects of cocaine in mice. J Pharmacol Exp Ther 2000;295:153-61.

Griffith JW, Peterson SL, Purvis RS. Differential neuroprotective effects of the NMDA receptor-associated glycine site partial agonists 1-aminocyclopropanecarboxylic acid (ACPC) and D-cycloserine in lithium-pilocarpine status epilepticus. Neurotoxicology 2004;25:835-47.

Rang HP, Dale MM, Ritter JM, Moore PK. Farmacologia. 7ª. ed. Elsevier, Rio de Janeiro, Elsevier, 2006, 263p.

Ware MR, Stewart RB. Seizures associated with fluoxetina therapy. Annals Pharmacotherapy 1989;23:428-33.

Ferrero AJ, Cereseto M, Reinés A, Bonavita CD, Sifonios LL, Rubio MC, et al. Chronic treatment with fluoxetine decreases seizure thershold in naive but not in rats exposed to the learned helplessness paradigm: correlation with the hippocampal glutamate release. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:678-86.

Kecskemeti V, Rusznak Z, Riba P, Wagner R, Harasztosi C, Nanasi PP, et al. Norfluoxetine and fluoxetine have similar anticonvulsant and Ca++ channel blocking pontencies. Brain Res Bull 2005;67:126-32.

Field MJ, Oles RJ, Lewis AS, Mccleary S, Hughes J, Singh L. Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 1999;80:391-8.

Freitas RM, Sousa FCF, Viana GSB, Fonteles MMF. Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpineinduced seizures and status epilepticus. Neurosci. Lett. 2006;408:79-83.

Dailey JW, Yan QS, Mishra RL, Burger JPV. Effects of fluoxetine on convulsions and on brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J Pharmacol Exp Ther 1992;260:533.

Dailey JW, Jobe P, Yan QS. Evidence that a serotonergic mechanism is involved in the anticonvulsant effect of fluoxetine in genetically epilepsyprone rats. Eur J Pharmacol 1994;252:105-12.

Isokawa M. Modulation of GABAA receptor-mediated inhibition by postsynaptic calcium in epileptic hippocampal neurons. Brain Res 1998;810:241-50.

Pasini A, Tortorella A, Gale K. Anticonvulsant effect of intranigral fluoxetine. Brain Res 1992;593:287-90.

Grasshoff C, Gileessen T, Thiermann H, Wagner E, Szinicz L. The effect of acetilcolinestrase-inhibition in depolarization-induced GABA release from rat striatal slices. Toxicology 2003;184:149-56.

Koss T, Tepper JM. Dual cholinergic control of fast-spinking interneurons in the neostriatum. Nature Neuroscience 1999;2:467-72.

Koss T, Tepper JM. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. J Neurosci 2002;22:529-35.

Reynolds EH. Vigabatrina. British Med J 1990;300:277-8.

Nehlig A, Marescaux C, Ferrandon A, André V. Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithiumpilocarpine model of temporal epilepsy. Epilepsy Res 2001;47:99-117.

Kohl BH, Dannahardt G. The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr Med Chem 2001;8:269-72.

Berger I, Gillis RA, Vitagliano S, Panico WH, Agee S, Kelly M, et al. NMDA receptors are involved at the ventrolateral nucleus tractus solitari for termination of inspiration. Eur J Pharmacol 1995;277:195-208.

Brorson JR, Manzolillo PA, Miller RJ. Ca2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinge cells. J Neurosci 1994;14:187-97.

Ellison G. The N-methyl-D-aspartate antagonists phencyclidine, ke-tamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res 1995;20:250-67.

Grasshoff C, Gileessen T, Wagner E, Thiermann H, Szinicz L. Ketamine reduces cholinergic modulated GABA release from rat striatal slices. Toxicol Lett 2005;156:361-7.

Jesse CR, Savegnago L, Rocha JB, Nogueira CW. Neuroportective effect caused by MPEP, an antagonist of metabotropic glutamate receptor mGLUR5, on seizures induced by pilocarpine in 21-day-old rats. Brain Res 2008; 1198:197-203.

Khan R, Krishnakumar A, Paulose CS. Decreased glutamate receptor binding and NMDA R1 gene expression in hippocampus of pilocarpineinduced epileptic rats: neuroprotective role of Bacopa monnieri extract. Epilepsy Behav 2008;12:54-60.

Kim JE, Kim DS, Kwak SE, Choi HC, Song HK, Choi SY, et al. Antiglutamatergic effect of riluzole: comparison with valproic acid. Neuroscience 2007;147:136-45.

Downloads

Publicado

2011-03-31

Como Citar

de Freitas, R. M. (2011). Sistemas de Neurotransmissão Envolvidos no Modelo de Epilepsia: Uma Revisão de Literatura. Revista Neurociências, 19(1), 128–138. https://doi.org/10.34024/rnc.2011.v19.8405

Edição

Seção

Relato de Caso
Recebido: 2019-02-22
Publicado: 2011-03-31

Artigos mais lidos pelo mesmo(s) autor(es)