Alterações Comportamentais e de Estresse Oxidativo no Sistema Nervoso Central pelo Uso de Álcool e Tabaco

Autores

  • Elias Turcatel Biomédico, Centro Universitário Metodista IPA, Porto Alegre-RS, Brasil.
  • Cláudia da Silva Funchal Farmacêutica Bioquímica, Laboratório de Bioquímica, Centro Universitário Metodista IPA, Porto Alegre-RS, Brasil.
  • Rosane Gomez Farmacêutica, Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre-RS, Brasil.

DOI:

https://doi.org/10.34024/rnc.2012.v20.8256

Palavras-chave:

Etanol, Cérebro, Estresse Oxidativo, Tabaco, Toxicidade

Resumo

Álcool e tabaco são as drogas lícitas mais consumidas no mundo oci­dental, frequentemente utilizadas em associação. Tanto o álcool quan­to o tabaco influenciam individualmente sistemas neurotransmissores, interferindo no comportamento de indivíduos expostos a eles, além de afetarem mecanismos pró e antioxidantes, com risco de dano neuronal promovido por espécies reativas de oxigênio. Pouco se sabe sobre os efeitos de sua associação sobre estes mesmos parâmetros. Neste con­texto, o objetivo deste estudo foi revisar os dados da literatura sobre os efeitos do álcool, cigarro ou sua associação sobre sistemas neurotrans­missores, sobre comportamentos e parâmetros de estresse oxidativo no sistema nervoso central de animais. Para contemplar esse objetivo fizemos extensa revisão de literatura, limitando as buscas desde o ano de 1970 até o ano de 2010. Embora os estudos sobre os efeitos da associação entre álcool e cigarro sejam ainda escassos, eles sugerem que estas substâncias afetam a neurotransmissão, modificando comporta­mentos, assim como aumentam a concentração de espécies reativas de oxigênio, interferindo sobre mecanismos antioxidantes.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Draft Global Strategy To Reduce The Harmful Use Of Alcohol, 2010 (endreço na internet). Suíça: Organização Mundial da Saúde (OMS) (atualizado em: fev/2010; acessado em: 02/10/2010). Disponível em: http://www.who.int/substance_abuse/alcstrategyaftereb.pdf

Centers for Disease Control and Prevention. Best practices for comprehensive tobacco control programs-2007. CDC, 2007. (atualizado em: 2010; acessado em: 04/05/2010). Disponível em: http://www.cdc.gov/tobacco/stateandcommunity/bestpractices/pdfs/2007/bestpractices_complete.pdf

Institute of Medicine (IM). Ending the tobacco problem: A blueprint for the nation (endereço na internet). Washington (D.C): National Academies Press. IM, 2007. (atualizado em: 2010; acessado em: 04/05/2010). Disponível em: http://www.iom.edu/~/media/Files/Report%20Files/2007/Ending-the-TobaccoProblemABlueprint-for-the-Nation/Tobaccoreport briefgeneral.pdf

Batel P, Pessione F, Maître C, Rueff B. Relationship between alcohol and tobacco dependencies among alcoholics who smoke. Addiction 1995;90:977-80. http://dx.doi.org/10.1111/j.1360-0443.1995.tb03507.x

Neiman J. Alcohol as a risk factor for brain damage: neurologic aspects. Alcohol Clin Exp Res 1998;22:346S-51S.

http://dx.doi.org/10.1097/00000374-199807001-00011 http://dx.doi.org/10.1111/j.1530-0277.1998.tb04389.x

Das SK, Vasudevan DM. Alcohol-induced oxidative stress. Life Sci 2007;81:177-87. http://dx.doi.org/10.1016/j.lfs.2007.05.005

Oga S, Ferreira Galvão J, Moraes Moreau RL. Fundamentos de Toxicologia. São Paulo: Ateneu, 2003, p.297-305.

Kabir Z, Connolly GN, Clancy L, Jemal A, Koh HK. Reduced lung cancer deaths attributable to decreased tobacco use in Massachusetts. Cancer Causes Control 2007;18:833-8. http://dx.doi.org/10.1007/s10552-007-9027-3

Hoffmann D, Hoffmann I, El-Bayoumy K. The less harmful cigarette: a controversial issue. Chem Res Toxicol 2001;14:767-90. http://dx.doi.org/10.1021/tx000260u

Fowles J, Dybing E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control 2003;12:424-30. http://dx.doi.org/10.1136/tc.12.4.424

Jaffe J. Tobacco smoking and nicotine dependence. Wonnacott S, Russell MAH, Stolerman IP. Nicotine psychopharmacology: molecular, cellular and behavioral aspects. Oxford: Oxford University Press, 1990, p.1-37.

Benowitz NL. Neurobiology of Nicotine Addiction: Implications for Smoking Cessation Treatment. Am J Med 2008;121:S3-S10. http://dx.doi.org/10.1016/j.amjmed.2008.01.015

Gilpin NW, Koob GF. Neurobiology of Alcohol Dependence: Focus on Motivational Mechanisms. Alcohol Res Health 2008;31:185-95.

Koob GF. A role for GABA mechanisms in the motivational effects of alcohol. Biochem Pharmacol 2004; 68:1515-25. http://dx.doi.org/10.1016/j.bcp.2004.07.031

Abreu AMM, Lima JMB, Matos LN, Pillon SC. Uso de álcool em vítimas de acidentes de trânsito: estudo do nível de alcoolemia. Rev Latino-Am Enfermagem 2010;18:513-20. http://dx.doi.org/10.1590/S0104-11692010000700005

Curtis DR, Johnston GA. Amino acid transmitters in the mammalian central nervous system. Ergeb Physio 1974;69:97-188.

Hoffman PL, Rabe CS, Grant KA, Valverius P, Hudspith M, Tabakoff B. Ethanol and the NMDA receptor. Alcohol 1990;7:229-31. http://dx.doi.org/10.1016/0741-8329(90)90010-A

Moghaddam B, Bolinao ML. Biphasic effect of ethanol on extracellular accumulation of glutamate in the hippocampus and nucleus accumbens. Neurosci Lett 1994;178:99-102. http://dx.doi.org/10.1016/03043940(94)90299-2

Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008;75:218-65. http://dx.doi.org/10.1016/j.bcp.2007.06.039

Roberts AJ, McDonald JS, Heyser CJ, Kieffer BL, Matthes HW, Koob GF, et al. mμ-Opioid receptor knockout mice do not self-administer alcohol. J Pharmac Exp Ther 2000;293:1002-8.

Virkkunen M, Linnoila M. Serotonin in early onset, male alcoholics with violent behaviour. Ann Med 1990;22:327-31. http://dx.doi.org/10.3109/07853899009147915

Sari Y, Zhou FC. Prenatal alcohol exposure causes long-term serotonin neuron deficit in mice. Alcohol Clin Exp Res 2004;28:941-8. http://dx.doi.org/10.1097/01.ALC.0000128228.08472.39

Zhou, FC, Sari Y, Powrozek TA. Fetal alcohol exposure reduces serotonin innervation and compromises development of the forebrain along the serotonergic pathway. Alcohol Clin Exp Res 2005;29:141-9. http://dx.doi.org/10.1097/01.ALC.0000150636.19677.6F

Halliwell B. The wanderings of a free radical. Free Radic Biol Med 2009;46:531-42. http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.008

Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ. Ubiquitous overexpression of Cu,Zn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 2000;55:B5-9. http://dx.doi.org/10.1093/gerona/55.1.B5

Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc diabetol 2005;4:1-11. http://dx.doi.org/10.1186/1475-2840-4-1 http://dx.doi.org/10.1186/1475-2840-4-5

Reynolds A, Laurie C, Mosley RL, Gendelman HE. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 2007;82:297-325. http://dx.doi.org/10.1016/S0074-7742(07)82016-2

Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 1999; 222:236-45. http://dx.doi.org/10.1046/j.1525-1373.1999.d01-140.x

Montoliu C, Sancho-Tello M, Azorin I, Burgal M, Vallés S, Renau-Piqueras J, et al. Ethanol increases cytochrome P4502E1 and induces oxidative stress in astrocytes. J Neurochem 1995;65:2561-70. http://dx.doi.org/10.1046/j.1471-4159.1995.65062561.x

Ramachandran V, Watts LT, Maffi SK, Chen J, Schenker S, Henderson G. Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J Neurosci Res 2003; 74:577-88. http://dx.doi.org/10.1002/jnr.10767

Agar E, Demir S, Amanvermez R, Boşnak M, Ayyildiz M, Celik C. The effects of ethanol consumption on the lipid peroxidation and glutathione levels in the right and left brains of rats. Int J Neurosci 2003;113:1643-52. http://dx.doi.org/10.1080/00207450390245207

Gonzalez A, Pariente JA, Salido GM. Ethanol stimulates ROS generation by mitochondria through Ca(2+) mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res 2007;1178:28-37. http://dx.doi.org/10.1016/j.brainres.2007.08.040

Nordmann R, Ribiere C, Rouach H. Ethanol-induced lipid peroxidation and oxidative stress in extrahepatic tissues. Alcohol Alcohol 1990;25:231-237.

Halliwell B, Gutteridge JMC. Free radical in biology and medicine. 3ª ed. London:Oxford Press, 1999,936p.

Calabrese V, Renis M, Calderone A, Russo A, Reale S, Barcellona ML, et al.Stress proteins and SH-groups in oxidant-induced cellular injury after chronic ethanol administration in rat. Free Radic Biol Med 1998;24:1159-67. http://dx.doi.org/10.1016/S0891-5849(97)00441-3

Somani SM, Husain K, Diaz-Phillips L, Lanzotti DJ, Kareti KR, Trammell GL. Interaction of exercise and ethanol on antioxidant enzymes in brain regions of the rat. Alcohol 1996;13:603-10. http://dx.doi.org/10.1016/S07418329(96)00075-4

Shaffer JB, Preston KE, Shepard BA. Nucleotide and deduced amino acid sequences of mouse catalase: molecular analysis of a low activity mutant. Nucleic Acids Res 1990;18:4941. http://dx.doi.org/10.1093/nar/18.16.4941

Harkany T, Sasvari M, Nyakas C. Chronic ethanol ingestioninduced changes in open-field behavior and oxidative stress in the rat. Pharmacol Biochem Behav 1997;58:195-201. http://dx.doi.org/10.1016/S00913057(96)00479-0

Frank O, Luisada-Opper A, Sorrell Mf, Zetterman R, Baker H. Effects of a Single Intoxicating Dose of Ethanol on the Vitamin Profile of Organelles in Rat Liver and Brain. J Nutr 1976;106:606-14.

Tizabi Y, Bai L, Copeland RLJ, Taylor RE. Combined effects of systemic alcohol and nicotine on dopamine release in the nucleus accumbens shell. Alcohol Alcohol 2007;42:413-16. http://dx.doi.org/10.1093/alcalc/agm057

Long EK, Rosenberger TA, Picklo MJ Sr. Ethanol withdrawal increases glutathione adducts of 4-hydroxy-2-hexenal but not 4-hydroxyl-2-nonenal in the rat cerebral cortex. Free Radic Biol Med 2010;48:384-90. http://dx.doi.org/10.1016/j.freeradbiomed.2009.10.048

Rouach H, Houzé P, Gentil M, Orfanelli MT, Nordmann R. Changes in some pro- and antioxidants in rat cerebellum after chronic alcohol intake. Biochem Pharmacol 1997;53:539-45. http://dx.doi.org/10.1016/S00062952(96)00770-8

Tsai GE, Ragan P, Chang R, Chen S, Linnoila VM, Coyle JT, et al. Increased glutamatergic neurotransmission and oxidative stress after alcohol withdrawal. Am J Psychiatry 1998;155:726-32.

Ray JG, Moineddin R, Bell CM, Thiruchelvam D, Creatore MI, Gozdyra P, et al. Alcohol Sales and Risk of Serious Assault. PloS Med 2008;104:725-31.

Martín-García E, Pallarès M. Intrahippocampal nicotine and neurosteroids effects on the anxiety-like behaviour in voluntary and chronic alcohol-drinking rats. Behav Brain Res 2005;164:117-27. http://dx.doi.org/10.1016/j.bbr.2005.06.007

Araujo NP, Kushiro DF, Grassl C, Hipólide DC, Souza-Formigoni ML, Tufik S, et al. Ethanol-induced behavioral sensitization is associated with dopamine receptor changes in the mouse olfactory tubercle. Physiol Behav 2009;96:12-17. http://dx.doi.org/10.1016/j.physbeh.2008.07.029

Li J, Bian WL, Xie GQ, Cui SZ, Wu ML, Li YH. Chronic ethanol intakeinduced changes in open-field behavior and calcium/ calmodulin-dependent protein kinase IV expression in nucleus accumbens of rats: naloxone reversal. Acta Pharmacol Sin 2008;29:646-52. http://dx.doi.org/10.1111/j.1745-7254.2008.00805.x

Al-Rejaie S, Dar MS. Antagonism of ethanol ataxia by intracerebellar nicotine: Possible modulation by mouse cerebellar nitric oxide and cGMP. Brain Res Bull 2006;69:187-96. http://dx.doi.org/10.1016/j.brainresbull.2005.12.002

Kotlinska J, Pachuta A, Bochenski M, Silberring J. Dansyl-PQRamide, a putative antagonist of NPFF receptors, reduces anxiety-like behavior of ethanol withdrawal in a plus-maze test in rats. Peptides 2009;30:1165-72. http://dx.doi.org/10.1016/j.peptides.2009.02.002

Gomez R, Barros HMT. Modelos animais de ansiedade: Princípios e Técnicas em Experimentação Animal. Porto Alegre: Editora da UFRGS, 2006;1:95-102.

Wallis CJ, Rezazadeh SM, Lal H. GM1 Ganglioside Reduces Ethanol Intoxication and the Development of Ethanol Dependence. Alcohol 1995;12:573-80. http://dx.doi.org/10.1016/0741-8329(95)02005-5

Maneckjee R, Minna JD. Opioids induce while nicotine suppresses apoptosis in human lung cancer cells. Cell Growth Differ 1994;5:1033-40.

Mandelzys A, Cooper E. Effects of ganglionic satellite cells and NGF on the expression of nicotine acetylcholine currents by rat sensory neurons. J Neurophysiol 1992;67:1213-21.

Gerasimov MR, Franceschi M, Volkow ND, Rice O, Schiffer WK, Dewey SL. Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 2000;38:432-37. http://dx.doi.org/10.1002/1098-2396(20001215)38:4<432::AIDSYN8>3.0.CO;2-Q

Mendelson JH, Sholar MB, Goletiani N, Siegel AJ, Mello NK. Effects of Low and High Nicotine Cigarette Smoking on Mood States and the HPA Axis in Men. Neuropsychopharmacology 2005;30:1751-63. http://dx.doi.org/10.1038/sj.npp.1300753

Sharp BM, Beyer HS. Rapid Desensitization of the Acute Stimulatory Effects of Nicotine on Rat Plasma Adrenocorticotropin and Prolactin. J Pharmacol Exp Therap 1986;238:486-91.

Matta SG, Fu Y, Valentine JD, Sharp BM. Response Of The Hypothalamo-Pituitary-Adrenal Axis To Nicotine.Psychoneuroendocrinology 1998;23:103-13. http://dx.doi.org/10.1016/S0306-4530(97)00079-6

Mansvelder HD, McGehee DS. Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 2002; 53:606-17. http://dx.doi.org/10.1002/neu.10148

Markou A. Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci 2008;363:3159-68. http://dx.doi.org/10.1098/rstb.2008.0095

Li X, Rainnie DG, McCarley RW, Greene RW. Presynaptic nicotinic receptors facilitate monoaminergic transmission. J. Neurosci 1998;18:1904-12.

Olausson P, Petersson A, Engel JA, Söderpalm B. Behavioral and neurochemical consequences of repeated nicotine treatment in the serotonin depleted rat. Psychopharmacology 2001;155:348-61. http://dx.doi.org/10.1007/s002130100710

Levin ED, Slade S, Johnson M, Petro A, Horton K, Williams P, et al. Ketanserin, a 5-HT2 receptor antagonist, decreases nicotine self-administration in rats. Eur J Pharmacol 2008;600:93-7. http://dx.doi.org/10.1016/j.ejphar.2008.10.016

Girdler SS, Maixner W, Naftel HA, Stewart PW, Moretz RL, Light KC. Cigarette smoking, stress-induced analgesia and pain perception in men and women. Pain. 2005;114:372-85. http://dx.doi.org/10.1016/j.pain.2004.12.035

Kiguchi N, Maeda T, Tsuruga M, Yamamoto A, Yamamoto C, Ozaki M, et al. Involvement of spinal met-enkaphalin in nicotine-induced antinociception in mice. Brain Res 2008;1189:70-7. http://dx.doi.org/10.1016/j.brainres.2007.10.086

Woodside JR. Female smokers have increased postoperative narcotic requirements. J Addict Dis 2000;19:1-10. http://dx.doi.org/10.1300/J069v19n04_01

Ramachandran S, Xie L, Scott JA, Subramaniam S, Lal R. A Novel Role for Connexin Hemichannel in Oxidative Stress and Smoking-Induced Cell Injury. PLoS One 2007;40:712-20. http://dx.doi.org/10.1371/journal.pone.0000712

Barr J, Sharma CS, Sarkar S, Wise K, Dong, L, Periyakaruppan A, et al. Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol Cell Biochem 2007;2979:93-9. http://dx.doi.org/10.1007/s11010-006-9333-1

Yildiz D, Ercal N, Armstrong DW. Nicotine enantiomers and oxidative stress. Toxicology 1998;130:155-65. http://dx.doi.org/10.1016/S0300-483X(98)00105-X

Manna SK, Rangaswamy T, Wise K, Sarkar S, Shishodia S, Biswal S, et al. Long term environmental tobacco smoke activates nuclear transcription factor- kappa B, activator protein-1 and stress responsive kinases in mouse brain. Biochem Pharmacol 2006;71:1602-9. http://dx.doi.org/10.1016/j.bcp.2006.02.014

Moon JH, Kim SY, Lee HG, Kim SU, Lee YB. Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar b amyloidpeptide (1-42)-stimulated microglia. Exp Mol Med 2008;40:11-18. http://dx.doi.org/10.3858/emm.2008.40.1.11

Stangherlin EC, Luchese C, Ardais AP, Nogueira CW. Passive smoke exposure induces oxidative damage in brains of rat pups: Protective role of diphenyl diselenide. Inhal Toxicol 2009;21:868-74. http://dx.doi.org/10.1080/08958370802526881

Baskaran S, Lakshmi S, Prasad PR. Effect of cigarette smoke on lipid peroxidation and antioxidant enzymes in albino rat. Indian J Exp Biol 1999;37:1196-1200.

Diagnostic and Statistical Manual of Mental Disorders–Fourth Edition. Washington, DC: American Psychiatric Association, 1994, 223p.

Gulick D, Gould TJ. Interactive effects of ethanol and nicotine on learning in C57BL/6J mice depend on both dose and duration of treatment. Psychopharmacology 2008;196:483-95. http://dx.doi.org/10.1007/s002130070982-x

Wooters TE, Neugebauer NM, Rush CR, Bardo MT. Methylphenidate enhances the abuse-related behavioral effects of nicotine in rats: intravenous self-administration, drug discrimination and locomotor cross-sensitization.

Neuropsychopharmacology 2008;33:1137-48. http://dx.doi.org/10.1038/sj.npp.1301477

Ernst M, Moolchan ET, Robinson ML. Behavioral and neural consequences of prenatal exposure to nicotine. J Am Acad Child Adolesc Psychiatry 2001;40:630-41. http://dx.doi.org/10.1097/00004583-200106000-00007

Kupferschmidt DA, Funk D, Erb S, Lê AD. Age-related effects of acute nicotine on behavioural and neuronal measures of anxiety. Behav Brain Res 2010;213:288-92. http://dx.doi.org/10.1016/j.bbr.2010.05.022

Galduróz JC, Noto AR, Nappo SA, Carlini EA. Uso de drogas psicotrópicas no Brasil: pesquisa domiciliar envolvendo as 107 maiores cidades do país. Rev. Latino-Am Enfermagem 2005;13:888-95.

Laranjeira R. I Levantamento Nacional sobre os padrões de consumo de álcool na população brasileira (endereço na internet). Brasília: Secretaria Nacional Antidrogas, 2007. (atualizado em: 11/2007; Acessado em: 24/01/2010). Disponível em: http://www.senad.gov.br/relatorio_padroes_consumo_alcool.pdf

Kuper H, Tzonou A, Kaklamani E, Hsieh CC, Lagiou P, Adami HO, et al. Tobacco smoking, alcohol consumption and their interaction in the causation of hepatocellular carcinoma. Int J Cancer 2000;85:498-502. http://dx.doi.org/10.1002/(SICI)1097-0215(20000215)85:4<498::AIDIJC9>3.3.CO;2-6 http://dx.doi.org/10.1002/(SICI)1097-0215(20000215)85:4<498::AIDIJC9>3.0.CO;2-F

Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 2004;34:9-19. http://dx.doi.org/10.1016/j.alcohol.2004.07.008

John U, Meyer C, Rumpf HJ, Schumann A, Thyrian JR, Hapke U. Strength of the relationship between tobacco smoking, nicotine dependence and the severity of alcohol dependence syndrome criteria in a population-based sample. Alcohol Alcohol 2003;38:606-12. http://dx.doi.org/10.1093/alcalc/agg122

Cahill A, Ley GJ, Wang X, Hoek JB. Chronic ethanol consumption causes alterations in the structural integrity of mitochondrial DNA in aged rats. Hepatology 1999;30:881-88. http://dx.doi.org/10.1002/hep.510300434

Van Der Toorn M, Slebos DJ, de Bruin HG, Leuvenink HG, Bakker SJ, Gans RO, et al. Cigarette smoke-induced blockade of the mitochondrial respiratory hain switches lung epithelial cell apoptosis into necrosis. Am J Physiol 2007;292:1211-18.

Gilbertson RJ, Barron S. Neonatal ethanol and nicotine exposure causes locomotor activity changes in preweanling animals. Pharmacol Biochem Behav 2005;81:54-64. http://dx.doi.org/10.1016/j.pbb.2005.02.002

Downloads

Publicado

2012-09-30

Como Citar

Turcatel, E., Funchal, C. da S., & Gomez, R. (2012). Alterações Comportamentais e de Estresse Oxidativo no Sistema Nervoso Central pelo Uso de Álcool e Tabaco. Revista Neurociências, 20(3), 444–454. https://doi.org/10.34024/rnc.2012.v20.8256

Edição

Seção

Revisão de Literatura
Recebido: 2019-02-21
Publicado: 2012-09-30