Hemosiderina, um possível biomarcador para sudep?

Autores

  • Andressa Sampaio Pereira
  • Patrícia de Morais Ferreira Brandão
  • Jerónimo A Auzmend
  • Alberto Lazarowski

DOI:

https://doi.org/10.34024/rnc.2021.v29.12514

Palavras-chave:

Epilepsia, SUDEP, espécies reativas de oxigênio

Resumo

A epilepsia é uma das doenças neurológicas de etiologia complexa que afeta em torno de 50 milhões de pessoas em todo o mundo, e é caracterizada por atividade elétrica anormal e convulsões recorrentes. As convulsões tônico-clônicas generalizadas repetitivas descontroladas (GTCS) são as principais causas de morte súbita inesperada em epilepsia (SUDEP). O estresse hipóxico induzido pela crise epiléptica resulta em disfunções neurocardiogênica, incluindo a sobrecarga de ferro a cardiomiopatia (IOC) que está relacionada à peroxidação lipídica grave causada pela produção de espécies reativas de oxigênio (ROS). A ROS induz a atividade convulsiva recorrente, favorecendo a superexpressão da glicoproteína P (P-gp) no coração. A P-gp desempenha uma função despolarizante em membranas de cardiomiócitos e os canais de potássio (Kir) controlam a excitabilidade celular quanto a repolarização do potencial de ação cardíaco. Todos esses acontecimentos resultam num possível aparecimento de bradicardia severa e arritmia fatal. Diversos estudos têm buscado evidências para diferentes possíveis biomarcadores para potencial previsão do risco de SUDEP evitando seu desfecho fatal.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Fisher RS, Boas WVE, Blume W, Elger C, Genton P, Lee P, et al. Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46:470-2. https://doi.org/10.1111/j.0013-9580.2005.66104.x

Taborda F, Rocha L, Enrique A, Goicoechea S, Casta R, Orozco S, et al. New model of pharmacoresistant seizures induced by 3-mercaptopropionic acid in mice. Epilepsy Res 2017;129:8-16. https://doi.org/10.1016/j.eplepsyres.2016.10.012

Scorza F, Tucci PJF. Sudden Death in Brazil: Epilepsy Should be in Horizon. Arq Bras Cardiol 2015;105:197-8. https://doi.org/10.5935/abc.20150072

Sveinsson O, Andersson T, Mattsson P, Carlsson S. Clinical risk factors in SUDEP. Neurology 2020;94:e419-29. https://doi.org/10.1212/WNL.0000000000008741

Auzmendi J, Akyuz E, Lazarowski A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav 2019;121:106590. https://doi.org/10.1016/j.yebeh.2019.106590

Akyuz E, Doganyigit Z, Eroglu E, Moscovicz F, Merelli A. Myocardial Iron Overload in an Experimental Model of Sudden Unexpected Death in Epilepsy Front Neurol 2021;12:1-9. https://doi.org/10.3389/fneur.2021.609236

Scorza FA, Arida RM, Albuquerque M, Cavalheiro EA. Sudden death in epilepsy: All roads lead to the heart. Rev Ass Med Bras 2008;54:199-200. https://doi.org/10.1590/s0104-42302008000300008

Wu X, Li Y, Zhang S, Zhou X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 2021;11:3052-9. https://doi.org/10.7150/thno.54113

Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target of protection against cardiomyopathy. Proc Nat Acad Sci 2019;116:2672-80. https://doi.org/10.1073/pnas.1821022116

Li J, Cao F, Yin Hl, Huang Z, Lin Z, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis 2020;11:88. https://doi.org/10.1038/s41419-020-2298-2

Kahn-Kirby A, Amagata A, Maeder C, Mei J, Sideris S, Kosaka Y, et al. Targeting ferroptosis: a novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoSOne 2019;14:e0214250. https://doi.org/10.1371/journal.pone.0214250

Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 2016;26:165-76. https://doi.org/10.1016/j.tcb.2015.10.014

Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, et al. Ferroptosis in Acute Central Nervous System Injuries: The Future Direction? Front Cell Develop Biol 2020;8:594. https://doi.org/10.3389/fcell.2020.00594

Shuang C, Yongmin C, Yukang Z, Xi K, Yan L, Meiwen G, et al. Iron Metabolism and Ferroptosis in Epilepsy. Front Neurosci 2020;14:1-16. https://doi.org/10.3389/fnins.2020.601193

Zhang L, Zou X, Zhang B, Cui L, Zhang J, Mao Y, et al. Label-free imaging of hemoglobin degradation and hemosiderin formation in brain tissues with femtosecond pump-probe microscopy. Theranostics 2018;8:4129-40. https://doi.org/10.7150/thno.26946

Li Y, Thom M, Jacques TS. Novel therapeutic targets in epilepsy: oxidative stress and iron metabolism. Neuropathol App Neurobiol 2020;46:519-21. https://doi.org/10.1111/nan.12615

Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders. Transl Gastroenterol Hepatol 2020;5:25. https://doi.org/10.21037/tgh.2019.11.15

Zimmer T, Ciriminna G, Arena A, Anink J, Korotkov A, Jansen F. Chronic activation of anti-oxidant pathways and iron accumulation in epileptogenic malformations. Neuropathol Appl Neurobiol 2020;46:546-63. https://doi.org/10.1111/nan.12596

Peng P, Peng J, Yin F, Deng X, Chen C, He F, et al. Ketogenic Diet as a Treatment for Super-Refractory Status Epilepticus in Febrile Infection-Related Epilepsy Syndrome. Front Neurol 2019;10:423. https://doi.org/10.3389/fneur.2019.00423

Auzmendi J, Lazarowski A. Seizures Induces Hypoxia and Hypoxia Induces Seizures. A Perverse Relationship that Increases the Risk of SUDEP. Neurol Dis Epilepsy J 2020;3:135. http://hdl.handle.net/11336/134927

Marelli A, Czornyj L, Rocha L, Lazarowski A. Erythropoietin as Potential Neuroprotective and Antiepileptogenic Agent in Epilepsy and Refractory Epilepsy. In: Talevi A, Rocha L (eds). Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. New York: Humana Press; 2016; p147-61. https://doi.org/10.1007/978-1-4939-6355-3_8

Auzmendi J, Akyuz E, Lazarowski A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav 2019;121:106590. https://doi.org/10.1016/j.yebeh.2019.106590

Doganyigit Z, Eroglu E, Moscovicz F, Merelli A, Lazarowski A, Auzmendi J. Myocardial Iron Overload in an Experimental Model of Sudden Unexpected Death in Epilepsy. Front Neurol 2021;12:4. https://doi.org/10.3389/fneur.2021.609236

Bleakley LE, Soh MS, Bagnall RD, Sadleir LG, Gooley S, Semsarian C, et al. Are Variants Causing Cardiac Arrhythmia Risk Factors in Sudden Unexpected Death in Epilepsy? Front Neurol 2020;11:925. https://doi.org/10.3389/fneur.2020.00925

Ravindran K, Powell KL, Todaro M, O'Brien TJ. The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res 2016;127:19-29. https://doi.org/10.1016/j.eplepsyres.2016.08.007

Matteis M, Cecchetto G, Munari G, Balsamo L, Gardiman MP, Giordano R, et al. Circulating miRNAs expression profiling in drug-resistant epilepsy: Up-regulation of miR-301a-3p in a case of sudden unexpected death. Leg Med 2018;31:7-9. https://doi.org/10.1016/j.legalmed.2017.12.003

El Shorbagy HH, Elsayed MA, Kamal NM, Azab AA, Bassiouny MM, Ghoneim IA. Heart-type fatty acid-binding protein as a predictor of cardiac ischemia in intractable seizures in children. J Pediatr Neurosci 2016;11:175-81. https://doi.org/10.4103/1817-1745.193364

Downloads

Publicado

2021-08-05

Como Citar

Pereira, A. S., Brandão, P. de M. F., Auzmend, J. A., & Lazarowski, A. (2021). Hemosiderina, um possível biomarcador para sudep?. Revista Neurociências, 29. https://doi.org/10.34024/rnc.2021.v29.12514

Edição

Seção

Artigos de Revisão
Recebido: 2021-08-05
Publicado: 2021-08-05