Astrócitos nas epilepsias: novas perspectivas para diagnóstico e tratamento da zona epileptogênica

Autores

DOI:

https://doi.org/10.34024/rnc.2021.v29.12515

Palavras-chave:

glias, astrócitos, dieta cetogênica, vesículas extracelulares, epilepsia

Resumo

Introdução. No mundo, estima-se que mais de 70 milhões de pessoas apresentem algum tipo de epilepsia, sendo a maioria destes casos residentes de países não desenvolvidos, e até um terço possuem mal controle das crises com as medicações existentes no mercado. Objetivo. Nesta breve revisão, exploraremos em maiores detalhes dois tópicos onde a importância das células da glia são marginalmente explorados: na detecção de patologias relacionadas à epilepsia através das vesículas extracelulares (VE) e no tratamento através da dieta cetogênica. Método. Foram selecionados, após buscas nas bases de dados MEDLINE e Scielo, artigos que investigaram o papel das células da glia na geração de vesículas extracelulares e na dieta cetogênica. Resultados. As vesículas extracelulares já se mostram cruciais para a identificação especialmente de gliomas, porém estudos demonstram que vesículas provenientes de astrócitos são encontradas no sangue de pacientes com epilepsia do lobo temporal, provando assim sua utilidade para várias patologias observadas nas epilepsias. Já no tratamento, os astrócitos são foco secundário apenas de medicamentos bloqueadores de transportadores de GABA, e nas dietas cetogênicas. Dentre os vários mecanismos propostos para os efeitos desta dieta, como alterações na distribuição celular de ATP, aumento da produção de GABA, e no sistema purinérgico via liberação de ATP pelas astrócitos e sua conversão em adenosina. Conclusões. Muitas evidências demonstram o impacto das células da glia no diagnóstico e tratamento das epilepsias.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 2014;55:475-82. https://doi.org/10.1111/epi.12550

Guilhoto LMFF. Revisão terminológica e conceitual para organização de crises e epilepsias: relato da Comissão da ILAE de Classificação e Terminologia, 2005-2009. Novos Paradigmas? J Epilepsy Clin Neurophysiol 2011;17:100-5. https://doi.org/10.1590/S1676-26492011000300005

Espinosa-Jovel C, Toledano R, Aledo-Serrano Á, García-Morales I, Gil-Nagel A. Epidemiological profile of epilepsy in low income populations. Seizure 2018;56:67-72. https://doi.org/10.1016/j.seizure.2018.02.0

Kaplan DI, Isom LL, Petrou S. Role of Sodium Channels in Epilepsy. Cold Spring Harb Perspect Med 2016;6:a022814. https://doi.org/10.1101/cshperspect.a022814

Blümcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med 2017;377:1648-56. https://doi.org/10.1056/NEJMoa1703784

Leite JP, Peixoto-Santos JE. Glia and extracellular matrix molecules: What are their importance for the electrographic and MRI changes in the epileptogenic zone? Epilepsy Behav 2019;121:106542. https://doi.org/10.1016/j.yebeh.2019.106542

Gzielo K, Soltys Z, Rajfur Z, Setkowicz ZK. The Impact of the Ketogenic Diet on Glial Cells Morphology. A Quantitative Morphological Analysis. Neuroscience 2019;413:239-51. https://doi.org/10.1016/j.neuroscience.2019.06.009

Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: New Roles for the Synaptic Stripper. Neuron 2013;77:10-8. http://doi.org/10.1016/j.neuron.2012.12.023

Romano E, Netti PA, Torino E. Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine. Pharmaceuticals 2020;13:319. http://doi.org/10.3390/ph13100319

Gourlay J, Morokoff AP, Luwor RB, Zhu H-J, Kaye AH, Stylli SS. The emergent role of exosomes in glioma. J Clin Neurosci 2017;35:13-23. http://doi.org/10.1016/j.jocn.2016.09.021

Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750

Figueroa JM, Carter BS. Detection of glioblastoma in biofluids. J Neurosurg 2018;129:334-40. https://doi.org/10.3171/2017.3.JNS162280

Raoof R, Bauer S, El Naggar H, Connolly NMC, Brennan GP, Brindley E, et al. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine 2018;38:127–41. http://doi.org/10.1016/j.ebiom.2018.10.068

Gitaí DLG, dos Santos YDR, Upadhya R, Kodali M, Madhu LN, Shetty AK. Extracellular Vesicles in the Forebrain Display Reduced miR-346 and miR-331-3p in a Rat Model of Chronic Temporal Lobe Epilepsy. Mol Neurobiol 2020;57:1674-87. https://doi.org/10.1007/s12035-019-01797-1

Korotkov A, Broekaart DWM, Banchaewa L, Pustjens B, Scheppingen J, Anink JJ, et al. microRNA‐132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro‐epileptogenic factors in human cultured astrocytes. Glia 2020;68:60-75. http://doi.org/10.1002/glia.23700

Wei N, Zhang H, Wang J, Wang S, Lv W, Luo L, et al. The Progress in Diagnosis and Treatment of Exosomes and MicroRNAs on Epileptic Comorbidity Depression. Front Psychiatry 2020;11:1-8. http://doi.org/10.3389/fpsyt.2020.00405

Martins‐Ferreira R, Chaves J, Carvalho C, Bettencourt A, Chorão R, Freitas J, et al. Circulating microRNAs as potential biomarkers for genetic generalized epilepsies: a three microRNA panel. Eur J Neurol 2020;27:660-6. http://doi.org/10.1111/ene.14129

Lin Z, Gu Y, Zhou R, Wang M, Guo Y, Chen Y, et al. Serum Exosomal Proteins F9 and TSP-1 as Potential Diagnostic Biomarkers for Newly Diagnosed Epilepsy. Front Neurosci 2020;14:1-12. http://doi.org/10.3389/fnins.2020.00737

Bălașa A, Șerban G, Chinezu R, Hurghiș C, Tămaș F, Manu D. The Involvement of Exosomes in Glioblastoma Development, Diagnosis, Prognosis, and Treatment. Brain Sci 2020;10:553. http://doi.org/10.3390/brainsci10080553

Louis DN, Deimling A von, Cavenee WK (eds). WHO Classification of Tumours of the Central Nervous System. Geneva: International Agency for Research on Cancer (IARC); 2016; 407 p.

Chen H, Judkins J, Thomas C, Wu M, Khoury L, Benjamin CG, et al. Mutant IDH1 and seizures in patients with glioma. Neurology 2017;88:1805-13. http://doi.org/10.1212/WNL.0000000000003911

Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008;10:1470-6. http://doi.org/10.1038/ncb1800

Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 2012;18:1835-40. http://doi.org/10.1038/nm.2994

De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martínez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 2015;6:1-6. http://doi.org/10.1038/ncomms9839

Hayashi Y, Iwato M, Hasegawa M, Tachibana O, Von Deimling A, Yamashita J. Malignant transformation of a gangliocytoma/ganglioglioma into a glioblastoma multiforme: A molecular genetic analysis: Case report. J Neurosurg 2001;95:138-42. http://doi.org/10.3171/jns.2001.95.1.0138

Rogawski MA, Löscher W, Rho JM. Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harb Perspect Med 2016;6:a022780. http://doi.org/10.1101/cshperspect.a022780

Vining EP, Freeman JM, Ballaban-Gil K, Camfield CS, Camfield PR, Holmes GL, et al. A multicenter study of the efficacy of the ketogenic diet. Arch Neurol 1998;55:1433-7. http://doi.org/10.1001/archneur.55.11.1433

Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging 2012;33:425.e19-27. http://doi.org/10.1016/j.neurobiolaging.2010.10.006

Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ, Bibus DM, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids 2008;43:65-77. http://doi.org/10.1007/s11745-007-3132-7

Masino SA, Rho JM. Metabolism and epilepsy: Ketogenic diets as a homeostatic link. Brain Res 2019;1703:26-30. http://doi.org/10.1016/j.brainres.2018.05.049

McNally MA, Hartman AL. Ketone bodies in epilepsy. J Neurochem 2012;121:28-35. http://doi.org/10.1111/j.1471-4159.2012.07670.x

Włodarek D. Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer’s Disease and Parkinson’s Disease). Nutrients 2019;11:169. http://doi.org/10.3390/nu11010169

Liśkiewicz A, Jędrzejowska-Szypułka H, Lewin-Kowalik J. Characteristics of ketogenic diet and its therapeutic properties in central nervous system disorders. Ann Acad Medicae Silesiensis 2012;66:66-7. https://annales.sum.edu.pl/Characteristics-of-ketogenic-diet-and-its-therapeutic-properties-in-central-nervous,131416,0,2.html

Guzmán M, Blázquez C. Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab 2001;12:169-73. http://doi.org/10.1016/s1043-2760(00)00370-2

Auestad N, Korsak RA, Morrow JW, Edmond J. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 1991;56:1376-86. http://doi.org/10.1111/j.1471-4159.1991.tb11435.x

Bixel MG, Hamprecht B. Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem 1995;65:2450-61. http://doi.org/10.1046/j.1471-4159.1995.65062450.x

Masino SA, Geiger JD. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci 2008;31:273-8. http://doi.org/10.1016/j.tins.2008.02.009

Masino SA, Kawamura M, Ruskin DN. Adenosine receptors and epilepsy: current evidence and future potential. Int Rev Neurobiol 2014;119:233-55. http://doi.org/10.1016/B978-0-12-801022-8.00011-8

Ruskin DN, Kawamura M, Masino SA. Adenosine and Ketogenic Treatments. J Caffeine Adenosine Res 2020;10:104-9. http://doi.org/10.1089/caff.2020.0011

Downloads

Publicado

2021-08-05

Como Citar

Pachane, B. C., Corrado, M., & Peixoto-Santos, J. E. (2021). Astrócitos nas epilepsias: novas perspectivas para diagnóstico e tratamento da zona epileptogênica. Revista Neurociências, 29. https://doi.org/10.34024/rnc.2021.v29.12515

Edição

Seção

Artigos de Revisão
Recebido: 2021-08-05
Publicado: 2021-08-05